
Evaluation of Efficient Archival Storage Techniques

Lawrence L. You
University of California, Santa Cruz
Jack Baskin School of Engineering

1156 High Street
Santa Cruz, California 95064

Tel: +1-831-459-4458
you@cs.ucsc.edu

Christos Karamanolis
Storage Systems Group
Hewlett-Packard Labs

1501 Page Mill Road, MS 1134
Palo Alto, CA 94304
Tel: +1-650-857-6956
Fax: +1-650-857-5548
christos@hpl.hp.com

Abstract
The ever-increasing volume of archival data that need
to be retained for long periods of time has motivated
the design of low-cost, high-efficiency storage sys-
tems. Inter-file compression has been proposed as a
technique to improve storage efficiency by exploit-
ing the high degree of similarity among archival data.
We evaluate the two main inter-file compression tech-
niques, data chunking and delta encoding, and com-
pare them with traditional intra-file compression. We
report on experimental results from a range of repre-
sentative archival data sets.

1 Introduction
Over the last several years, we have witnessed an un-
precedented growth of the volume of stored digital
data. A recent study estimated the amount of origi-
nal digital data generated in 2002 alone to be close to
5 exabytes, approximately double the volume of data
created in 1999 [4]. An increasing fraction of this
corpus is archival data: immutable data retained for
long periods of time for legal or archival purposes.
Examples of archival data include rich media such as
audio, images and video, documents, email, and in-
stant messages.

The high rate of archival data generation has mo-
tivated a number of research projects to look into

ways of improving the space efficiency of disk-based
archival storage systems. Researchers have observed
that they can take advantage of content overlapping,
which is common in archival data, to improve stor-
age efficiency [9, 3]. There are two main techniques
proposed for this purpose. The first technique divides
each data object into a number of non-overlapping
chunksand stores onlyuniquechunks in the archival
storage system. Chunks may be of fixed or variable
size. The second technique is based on resemblance
detection between data objects and usesdelta encod-
ing to store only deltas instead of entire data objects.

These two approaches have been developed and used
in very different contexts, with different goals and
data sets. For example, variable-size chunking was
proposed for improving the bandwidth consumption
of network file systems [7]. Delta encoding [1] has
been used for data compression in HTTP [6] as well
as in version-control systems [11]. However, there
has been no attempt to compare the two approaches
side-by-side, evaluating the storage efficiency they
achieve and their applicability to different archival
data sets.

The goals of this work can be summarized as fol-
lows: (i) evaluate the applicability of the approaches
on different data types that exhibit different degrees



of inter-file similarities; (ii) identify the key param-
eters for each technique and provide rules of thumb
for their settings for different data types; (iii) com-
pare inter-file compression techniques with tradi-
tional lossless intra-file techniques and explore the
potential benefits of hybrid approaches. Further, we
provide a performance analysis of the different ap-
proaches, and discuss system design and engineering
considerations.

2 Overview
Archival data, by its nature, often exhibits strong
inter-file resemblance. This paper examines tech-
niques that take advantage of such inter-file resem-
blance to avoid storing redundant data and thus im-
prove storage efficiency. Such techniques may be
combined, if necessary, with lossless intra-file com-
pression, such as sliding-window compression tech-
niques (e.g.zipvariants).

Several systems that exploit data redundancy at dif-
ferent levels of granularity have been developed in
order to improve storage efficiency. One class of sys-
tems detects redundant chunks of data at granulari-
ties that range from entire file (EMC’s Centera) down
to individual fixed-size disk blocks (Venti [9]) and
variable-size data chunks (LBFS [7]). We focus on
the use of variable-sized chunks, which have been
reported to exhibit better efficiency over the special
case of fixed-size blocks [8]. Typically, such tech-
niques are used in content-addressable storage (CAS)
infrastructures. The second class of systems detects
and stores only differences (deltas) between similar
files, at the granularity of bytes [3].

2.1 Chunking
Data chunking involves two problems. First, a data
stream, such as a file, needs to be divided into chunks
in a deterministic way. We consider the general case
of variable-sized chunks, which works for any type of
data, including binary formats. Chunk boundaries are
defined by calculating some feature (a digital signa-
ture) over a sliding window of fixed size. In our pro-
totype, we use Rabin fingerprints [10], for their com-
putational efficiency in the above scenario. Bound-
aries are set where the value of the feature meets cer-
tain criteria, such as when the value, modulo some
specified integer divisor, is zero; the divisor affects
the average chunk size. Such deterministic algo-
rithms do not require any knowledge of other files
in the system. Moreover, chunking can be performed
in a decentralized fashion, even on the clients of the
system.

The second problem is to uniquely identify chunks.
An algorithm is required that computes a digest over
a variable-length block of data. Currently in the pro-
totype, we reuse the Rabin fingerprinting code for de-
riving chunk identifiers. In practice and for very large
data sets, one would need an algorithm that guaran-
tees low probability for collisions, such as MD5 and
SHA variants. Exactly because chunks are content-
addressable, chunking is suitable for CAS systems.
Only unique chunks are stored for any file. The origi-
nal files can be reconstructed from their constituent
chunks. To do that, the system needs to maintain
metadata that maps file identifiers to a list of chunk
identifiers. Any evaluation of storage efficiency must
take into account the overhead due to the metadata.
Figure 1 illustrates the main parameters of a chunk-
ing technique.

 sliding window
window size

chunk size

chunk end/start
Rabin fingerprint size chunk ID size

Figure 1: Chunking parameters

We developed a prototype program, namedchc, to
evaluate the efficiency and performance characteris-
tics of chunking without having to build a complete
storage system. The input tochc is an archive (tar
file) of a number of files that form the target data set;
chc produces an output archive that includes unique
chunks derived from the original files. Optionally, we
can compress the individual chunks in the archive us-
ing thezlib compression library.chccaptures a list of
chunk identifiers for each file, as well as the identifier
and size for each chunk. This metadata is stored also
in the output archive and provides an estimate of stor-
age overhead due to chunking. In addition,chc can
reconstruct the original data set from the final chunk
archive.

2.2 Delta encoding
Delta compression is used to compute a delta encod-
ing between a new file and a reference file already
stored in the system. When resemblance is above
some threshold, a delta is calculated and only that is
stored in the system. There are three key problems
that need to be addressed in delta encoding.

First, resemblance has to be detected in a content-
independent and efficient way. We use the shingling
technique proposed by the DERD project [3]. It cal-
culates Rabin fingerprints using a sliding window
along an entire file (the window size is a configurable

2



parameter). The number of fingerprints produced is
proportional to the file size. A deterministicfeature
selectionalgorithm selects a subset of those finger-
prints, called asketch, which is retained and later
used to compute an estimate of theresemblancebe-
tween two files by comparing two sketches using the
approximate min-wise independent permutations[2].
This estimate computes similarity between two files
by counting the number of matching pairs of features
between two sketches. It has been shown that even
small sketches, e.g. sets of 20 features, capture suffi-
cient degrees of resemblance.

Thus, when new data needs to be stored, one has
to find an appropriate reference file in the system:
a file exhibiting a high degree of resemblance with
the new data. In general, this is a computationally
intensive task (especially given the expected size of
archival data repositories). In the prototype, we use
an exhaustive search over all stored files. We are cur-
rently investigating the use of hierarchical clustering
of sketches to reduce the search.

The third problem is to calculate the delta encoding
once a reference file has been found. Delta compres-
sion is a well-explored area, and in the prototype we
used thexdelta tool [5], which computes the output
using thezlib (gzip) library. Pointers to reference files
are stored with every delta. These identifiers (e.g.
SHA digests), along with sketch data, contribute to
accounted storage overhead. Our prototype consists
of three programs, one for each of the three above
problems: feature extraction, resemblance detection,
and delta generation.

3 Evaluation
We explain the experimental methodology we used
to measure the efficiency, describe the data sets, and
analyze the storage efficiency and differences in per-
formance of the two archival storage techniques.

As noted above, storage efficiency is the determining
factor for the applicability of an inter-file compres-
sion approach. We report on the storage space re-
quired as a percentage of the original, uncompressed
data set size. For example, stored data that is 20%
the size of the original represents an efficiency ratio
of 5:1. The functionality and performance of each
approach depends on the settings of a number of pa-
rameters. As expected, experimental results indicate
that no single parameter setting provides optimal re-
sults for all data sets. Thus, we first report on param-
eter tuning for each approach and different data sets.
Then, using optimal parameters for each data set, we

compare the overall storage efficiency achieved by
each approach. The required storage includes the
overhead due to the metadata that needs to be stored.
Last, we discuss the performance cost and the design
issues of applying the two techniques to an archival
storage system.

3.1 Data Sets
We chose a range of data sets that we believe to
be representative of archival data. Email messages
often contain headers (and sometimes attachments)
that show great resemblance. Source code and web
content are typically versioned. Non-textual content
such as presentations and imagery are often similar
and require lots of storage space. Finally, computer-
generated data such as logs are generated in high vol-
umes and can contain repeated content such as field
descriptors. The following is the list of data sets we
use.

• HP Support Unix logs (two sets of different total
volume)

• Linux kernel 2.2 source code (four versions)
• Email (single user)
• Mailing list archive (BLU)
• HP ITRC Support web site
• Microsoft PowerPoint presentations
• Digital raster graphics (California DRG 37122

7.5 minute untrimmed TIFF)

3.2 Parameter Tuning
In the case of chunking, theexpected chunk sizeis
a key configuration parameter. It is implicitly set by
setting the fingerprint divisor as well as the minimum
and maximum allowed chunk size. In general, the
smaller it is, the higher the probability of detecting
common chunks among files. For data with very high
inter-file similarity (such as log files), small chunk
sizes result in greater storage efficiency. However, for
most data this is not the case, because smaller chunks
also mean higher metadata overhead. Often, because
of this overhead the storage space required may be
greater than the size of the original corpus. As Fig-
ure 2 shows, the optimal expected chunk size depends
on the type of data; using 128-bit identifiers, the best
efficiencies range from 256 to 512 bytes.

The main configurable parameter in the case of delta
encoding is the size of the sketches—i.e. the num-
ber of features used for resemblance detection. Our
experimental results are consistent with what was re-
ported by Douglis et al.: a sketch size of 20 to 30 fea-
tures is sufficient to capture resemblance among files.
Another parameter is theresemblance threshold, the

3



0%


20%


40%


60%


80%


100%


120%


140%


160%


180%


32
 64
 12
8
 25
6
 51
2
 10
24
 20
48
 40
96


List-KW
 List-Magick
 Li
st
-B
LU

Paper 
Archive 
(PDF)
 DRG 
32114
 Po
we
rP
oi
nt

L
i
n
u
x
 
2
.
2
.
x
 logs
-500


Chunking efficiency by divisor

128-bit chunk IDs, min=32 bytes, max=65536 bytes

divisor size (bytes)

ef
fic

ie
nc

y 
(%

)

Figure 2: Chunking efficiency by divisor size

number of features that must correspond between two
files to consider that sufficient resemblance exists to
justify calculating the delta instead of storing the en-
tire new file. For the evaluation of delta encoding,
we traverse the target data set one file at a time in
a random order. For a file, a delta is created against
the file with the highest resemblance that is already in
the output archive, as long the resemblance is above
a threshold of one corresponding feature. Otherwise,
the entire file is stored as a new reference file.

3.3 Storage Efficiency
Table 1 shows the achieved storage efficiency by the
two approaches. We do that with and without addi-
tional zlib compression of chunks and deltas respec-
tively. To establish a baseline for each data set, we
create a singletar file from the data set, and then
compress it with an intra-file compression program,
gzip. As expected (and as shown by the two first
rows of the table), inter-file compression improves
with larger corpus sizes. This is not the case with
gzip.

The HP Unix Logs (8,000 files) show very high simi-
larity. Chunk-based compression on this similar data
was reduced to 11% of the original data size, and
when each chunk is compressed using thezlib (simi-
lar togzip) compression, it is just 7.7% of the original
size. Even more impressive are the reductions in size
when using delta compression. When delta compres-
sion is used alone, the data set is reduced to 4% of
the original size, but when combined withzlib com-
pression, the compressed data is less than 1% of the
original size.

Textual content, such as web pages, can be highly
similar. However, in the case of the HP ITRC con-
tent,gzip compression is more efficient than chunk-
ing or delta. More surprisingly,gzip is better even
when we do additional compression of chunks and

deltas. The reason is thatgzip’s dictionary is more ef-
ficient across entire files than within the smaller indi-
vidual chunks, and chunk IDs appear as random (es-
sentially non-compressible) data. But in the context
of an archival storage system,gzip’s advantage is not
likely to be as effective in practice; this is discussed
below.

Non-textual data, such as the PowerPoint files with
chunking and delta (especially withgzip) achieve bet-
ter efficiency thangzipalone. However, the achieved
compression rates are less impressive than those for
the log data. For raster graphics, delta encoding with
gzipachieves modest improvement overgzipalone.

A single user’s email directory and a mailing list
archive show little improvement when using delta.
Chunking is less effective thangzip, although we
would expect it to reduce redundancy found across
multiple users’ data.

In most cases, inter-file compression outperforms
intra-file compression, especially when individual
chunks and deltas are internally compressed. Chunk-
ing achieves impressive efficiency for large volumes
of very similar data. On the other hand, delta en-
coding seems better for less similar data. We be-
lieve that this is due to the lower storage overhead
required for delta metadata. Typical sketch sizes of
80 to 120 bytes (20to 30features× 4 bytes) for a file
of any size are significantly smaller than the overhead
of chunk-based storage, which is linear with the size
of the file.

Although compressing a set of files into a singlegzip
file to establish a baseline measurement helps illus-
trate how much redundancy might exist within a data
set, it is not likely that an archival storage system
would reach those levels of efficiency for several rea-
sons. Most important is that files would be added
to an archival system over time and files would be
retrieved individually. If a new file were added to
the archival store, it would not be stored as efficiently
unless the file could be incorporated into an existing
compressed file collection, i.e. the new file would
need to be added to an existingtar/gzip file. Like-
wise, retrieving a file would require first extracting it
from a compressed collection and this would require
additional time and resources over a chunk or delta-
based file retrieval method.

Our experiments measured the size of an entire cor-
pus, in the form of atar file after it has been com-
pressed withgzip. Had we compressed each file with

4



Data Set Size # Files tar +
gzip

Chunk Chunk
+ zlib

Delta Delta +
zlib

HP Unix Logs 824 MB 500 15% 13% 5.0% 3.0% 1.0%
HP Unix Logs 13,664 MB 8,000 14% 11% 7.7% 4.0% 0.94%
Linux 2.2 source (4 vers.) 255 MB 20,400 23% 57% 22% 44% 24%
Email (single user) 549 MB 544 52% 98% 62% 84% 50%
Mailing List (BLU) 45 MB 46 22% 98% 53% 67% 21%
HP ITRC Web Pages 71 MB 4,751 16% 86% 33% 50% 26%
PowerPoint 14 MB 19 67% 55% 46% 38% 31%
Digital raster graphics 430 MB 83 42% 102% 55% 99% 42%

Table 1: Storage efficiency comparison (64-bit chunk IDs)

gzip first and then computed the aggregate size of
all compressed files, the sizes forgzip-compressed
files would have been much larger. For example, in
the case of the HP ITRC web pages,gzip efficiency
would have been 30% of the original size, much
larger than the 16% shown in table 1, and larger than
the 26% that can be achieved by using delta compres-
sion withzlib. When delta compression (or to a lesser
extent, chunking) is applied across files first and then
an intra-file compression method second, it is more
effective than compressing large collections of data
because additional redundancy can be eliminated.

3.4 Performance
In practice, space efficiency is not the only factor
used to choose a compression technique; we briefly
discuss some important systems issues such as com-
putation and I/O performance.

The chunking approach requires less computation
than delta encoding. It requires two hashing opera-
tions per byte in the input file: one fingerprint calcu-
lation and one digest calculation. In contrast, delta
encoding requiress+ 1 fingerprint calculations per
byte, wheres is the sketch size. It also requires cal-
culating the deltas, even though this can be performed
efficiently, in linear time with respect to the size of the
inputs. Additional issues with delta encoding include
efficient file reconstruction and resemblance detec-
tion in large repositories.

The two techniques exhibit different I/O patterns.
Chunks can be stored on the basis of their identifiers
using a (potentially distributed) hash table. There
is no need for maintaining placement metadata and
hashing may work well in distributed environments.
However, reconstructing files may involve random
I/O. In contrast, delta-encoded objects are whole ref-
erence files or smaller delta files, which can be stored
and accessed efficiently in a sequential manner. But,
placement in a distributed infrastructure is more in-
volved.

4 Conclusions
Inter-file compression is emerging as a technique to
improve space efficiency in archival storage systems.
This paper provides the first direct comparison of
the two main techniques proposed in the literature,
namely chunking and delta encoding, and compares
them against traditional intra-file compression. In
general, both chunking and delta encoding outper-
form gzip, especially when they are combined with
compression of individual chunks and deltas. Chunk-
ing is computationally cheap and can be easily used
in distributed systems. It works well for data with
very high similarity. Thus, it is applicable to appli-
cations where there are multiple versions of the same
data, such as version control systems, and log files.
On the other hand, delta encoding is more computa-
tionally expensive, but more efficient with less simi-
lar data and thus, it is potentially applicable to a wider
range of data sets.

Acknowledgments

Lawrence You was supported by a grant from
Hewlett-Packard Laboratories (via CITRIS), Mi-
crosoft Research, and supported in part by National
Science Foundation Grant CCR-0310888. We thank
Kave Eshghi and George Forman of Hewlett-Packard
Laboratories for their help and insight into the behav-
ior of file chunking. We are also grateful to members
of the Storage Systems Research Center at the Uni-
versity of California, Santa Cruz for their help prepar-
ing this paper.

References

[1] M. Ajtai, R. Burns, R. Fagin, D. D. E. Long, and
L. Stockmeyer. Compactly encoding unstructured in-
puts with differential compression.Journal of the
ACM, 49(3):318–367, May 2002.

5



[2] A. Z. Broder, M. Charikar, A. M. Frieze, and
M. Mitzenmacher. Min-wise independent permuta-
tions. Journal of Computer and Systems Sciences,
60(3):630–659, 2000.

[3] F. Douglis and A. Iyengar. Application-specific delta-
encoding via resemblance detection. InProceedings
of the 2003 USENIX Annual Technical Conference,
San Antonio, Texas, June 2003.

[4] P. Lyman, H. R. Varian, K. Searingen,
P. Charles, N. Good, L. L. Jordan, and J. Pal.
How much information? 2003. http:
//www.sims.berkeley.edu/research/
projects/how-much-info-2003/ , Oct.
2003.

[5] J. P. MacDonald. File system support for delta com-
pression. Master’s thesis, University of California at
Berkeley, 2000.

[6] J. Mogul, F. Douglis, A. Feldmann, and B. Krishna-
murthy. Potential benefits of delta-encoding and data
compression for HTTP. InProceedings of the Con-
ference on Applications, Technologies, Architectures,
and Protocols for Computer Communication (SIG-
COMM ’97), Sept. 1997.

[7] A. Muthitacharoen, B. Chen, and D. Mazières. A
low-bandwidth network file system. InProceedings
of the 18th ACM Symposium on Operating Systems
Principles (SOSP ’01), pages 174–187, Lake Louise,
Alberta, Canada, Oct. 2001.

[8] C. Policroniades and I. Pratt. Feasibility of data com-
pression by eliminating repeated data in practical file
systems. First Year Report.

[9] S. Quinlan and S. Dorward. Venti: A new approach
to archival storage. In D. D. E. Long, editor,Pro-
ceedings of the 2002 Conference on File and Storage
Technologies (FAST), pages 89–101, Monterey, Cali-
fornia, USA, 2002. USENIX.

[10] M. O. Rabin. Fingerprinting by random polynomials.
Technical Report TR-15-81, Center for Research in
Computing Technology, Harvard University, 1981.

[11] W. F. Tichy. RCS—a system for version control.
Software—Practice and Experience, 15(7):637–654,
July 1985.

6


