Evaluation of Efficient Archival Storage Techniques

Lawrence L. You
University of California, Santa Cruz
Jack Baskin School of Engineering

1156 High Street

Santa Cruz, California 95064
Tel: +1-831-459-4458
you@cs.ucsc.edu

Christos Karamanolis
Storage Systems Group
Hewlett-Packard Labs
1501 Page Mill Road, MS 1134
Palo Alto, CA 94304
Tel: +1-650-857-6956
Fax: +1-650-857-5548
christos@hpl.hp.com

Abstract ways of improving the space efficiency of disk-based

The ever-increasing volume of archival data that ne@fhival storage systems. Researchers have observed
to be retained for long periods of time has motivatdfat they can take advantage of content overlapping,
the design of low-cost, high-efficiency storage sy¥Nich is common in archival data, to improve stor-
tems. Inter-file compression has been proposed a8% €fficiency [9, 3]. There are two main techniques
technique to improve storage efficiency by eXp|oiproposed for thIS purpose. The first technique dIVIqu
ing the high degree of similarity among archival dat§2ch data object into a number of non-overlapping
We evaluate the two main inter-file compression tech?Unksand stores onlyniquechunks in the archival
niques, data chunking and delta encoding, and coRferage system. Chunks may be of fixed or variable
pare them with traditional intra-file compression. Wéize- The second technique is based on resemblance

report on experimental results from a range of reprd€tection between data objects and wsglta encod-
sentative archival data sets. ing to store only deltas instead of entire data objects.

. These two approaches have been developed and used
1 Introduction in very different contexts, with different goals and
Over the last several years, we have witnessed an data sets. For example, variable-size chunking was
precedented growth of the volume of stored digitaroposed for improving the bandwidth consumption
data. A recent study estimated the amount of origif network file systems [7]. Delta encoding [1] has
nal digital data generated in 2002 alone to be closelieen used for data compression in HTTP [6] as well
5 exabytes, approximately double the volume of dadéa in version-control systems [11]. However, there
created in 1999 [4]. An increasing fraction of thias been no attempt to compare the two approaches
corpus is archival data: immutable data retained feide-by-side, evaluating the storage efficiency they
long periods of time for legal or archival purposesachieve and their applicability to different archival
Examples of archival data include rich media such data sets.
audio, images and video, documents, email, and in-
stant messages. The goals of this work can be summarized as fol-
lows: (i) evaluate the applicability of the approaches
The high rate of archival data generation has mon different data types that exhibit different degrees
tivated a number of research projects to look into

of inter-file similarities; (ii) identify the key param-The second problem is to uniquely identify chunks.
eters for each technique and provide rules of thurdm algorithm is required that computes a digest over
for their settings for different data types; (iii) coma variable-length block of data. Currently in the pro-
pare inter-file compression techniques with tradietype, we reuse the Rabin fingerprinting code for de-
tional lossless intra-file techniques and explore thiwing chunk identifiers. In practice and for very large
potential benefits of hybrid approaches. Further, viata sets, one would need an algorithm that guaran-
provide a performance analysis of the different apees low probability for collisions, such as MD5 and
proaches, and discuss system design and enginee8htA variants. Exactly because chunks are content-
considerations. addressable, chunking is suitable for CAS systems.
Only unique chunks are stored for any file. The origi-
. nal files can be reconstructed from their constituent
2 Overview chunks. To do that, the system needs to maintain
Archival data, by its nature, often exhibits strongietadata that maps file identifiers to a list of chunk
inter-file resemblance. This paper examines teddentifiers. Any evaluation of storage efficiency must
niques that take advantage of such inter-file resetake into account the overhead due to the metadata.
blance to avoid storing redundant data and thus ifigure 1 illustrates the main parameters of a chunk-
prove storage efficiency. Such techniques may It technique.
combined, if necessary, with lossless intra-file com-
pression, such as sliding-window compression tech- ging window

window size

nigues (e.gzip variants). | 3

Several systems that exploit data redundancy at dif- ohunk size |

ferent levels of granularity have been developed in chunkendistart —e— -0
order to improve storage efficiency. One class of sys- Rabin fingerprint size - chunk ID size
tems detects redundant chunks of data at granulari- Figure 1: Chunking parameters

ties that range from entire file (EMC'’s Centera) down developed
to individual fixed-size disk blocks (Venti [9]) and'/e developed a prototype program, nantéd, to

variable-size data chunks (LBFS [7]). We focus 0ﬁvaluate the efficiency and performance characteris-

the use of variable-sized chunks, which have bellfs of chunking withogt having t.o build a c_:omplete

reported to exhibit better efficiency over the specli_?roragfe systebm. 1—?? mpr)]ut ?hc 'S r?n arCh'V:; tar)
case of fixed-size blocks [8]. Typically, such tec lle) o %num eroffilest ath_ormrt] e_tarlge(:jt ata .SEt’
nigues are used in content-addressable storage (C @:}pro uces an output archive that includes unique

infrastructures. The second class of systems dete gnks derived from the original files. Optionally, we

and stores only differences (deltas) between simi%%ntﬁggﬁ’)rizfntgri2‘?22?%?;;‘;2'; LQJ?;S""SEIV;US'
files, at the granularity of bytes [3]. : e X . -
g y ytes [3] chunk identifiers for each file, as well as the identifier

21 Chunki and size for each chunk. This metadata is stored also
: u_n 'r_]g) in the output archive and provides an estimate of stor-
Data chunking involves two problems. First, a datgge overhead due to chunking. In additichc can

stream, such as afile, needs to be divided into churkgonstruct the original data set from the final chunk
in a deterministic way. We consider the general cagg-hive.

of variable-sized chunks, which works for any type of

data, including binary formats. Chunk boundaries ag2 Delta encoding

defined by calculating some feature (a digital sign®elta compression is used to compute a delta encod-
ture) over a sliding window of fixed size. In our proing between a new file and a reference file already
totype, we use Rabin fingerprints [10], for their comstored in the system. When resemblance is above
putational efficiency in the above scenario. Boundeme threshold, a delta is calculated and only that is
aries are set where the value of the feature meets agored in the system. There are three key problems
tain criteria, such as when the value, modulo sonigat need to be addressed in delta encoding.
specified integer divisor, is zero; the divisor affects

the average chunk size. Such deterministic algbist, resemblance has to be detected in a content-
rithms do not require any knowledge of other filemdependent and efficient way. We use the shingling
in the system. Moreover, chunking can be performeechnique proposed by the DERD project [3]. It cal-
in a decentralized fashion, even on the clients of tieelates Rabin fingerprints using a sliding window
system. along an entire file (the window size is a configurable

parameter). The number of fingerprints produced égempare the overall storage efficiency achieved by
proportional to the file size. A deterministieature each approach. The required storage includes the
selectionalgorithm selects a subset of those fingeoverhead due to the metadata that needs to be stored.
prints, called asketch which is retained and laterLast, we discuss the performance cost and the design
used to compute an estimate of tesemblancde- issues of applying the two techniques to an archival
tween two files by comparing two sketches using tistorage system.

approximate min-wise independent permutatif#js

This estimate computes similarity between two filed-1 Data Sets

by counting the number of matching pairs of featurdye chose a range of data sets that we believe to
between two sketches. It has been shown that eéhrepresentative of archival data. Email messages

small sketches, e.g. sets of 20 features, capture suffen contain headers (and sometimes attachments)
cient degrees of resemblance. that show great resemblance. Source code and web

content are typically versioned. Non-textual content
Thus, when new data needs to be stored, one Is&€h as presentations and imagery are often similar
to find an appropriate reference file in the systerdnd require lots of storage space. Finally, computer-
a file exhibiting a high degree of resemblance wienerated data such as logs are generated in high vol-
the new data. In general, this is a computationalynes and can contain repeated content such as field
intensive task (especially given the expected size @#scriptors. The following is the list of data sets we
archival data repositories). In the prototype, we usse.
an exhaustive search over all stored files. We are cur-

rently investigating the use of hierarchical clustering 4 Hp Support Unix logs (two sets of different total
of sketches to reduce the search. volume)

e Linux kernel 2.2 source code (four versions)
The third problem is to calculate the delta encoding ¢ Email (single user)
once a reference file has been found. Delta compress Mailing list archive (BLU)
sion is a well-explored area, and in the prototype wee HP ITRC Support web site
used thexdeltatool [5], which computes the output e Microsoft PowerPoint presentations
using thezlib (gzip) library. Pointers to reference files e Digital raster graphics (California DRG 37122
are stored with every delta. These identifiers (e.g. 7.5 minute untrimmed TIFF)
SHA digests), along with sketch data, contribute to
accounted storage overhead. Our prototype consi ti

of three programs, one for each of the three aboyé Parameter Tuning

problems: feature extraction, resemblance detectiéﬂ,the case of c'hunkmg, thexpect'eq Chlﬁ'nk s148
and delta generation. a key configuration parameter. It is implicitly set by

setting the fingerprint divisor as well as the minimum
. and maximum allowed chunk size. In general, the
3 Evaluation smaller it is, the higher the probability of detecting
We explain the experimental methodology we use@dmmon chunks among files. For data with very high
to measure the efficiency, describe the data sets, ameér-file similarity (such as log files), small chunk
analyze the storage efficiency and differences in psizes result in greater storage efficiency. However, for
formance of the two archival storage techniques. most data this is not the case, because smaller chunks
also mean higher metadata overhead. Often, because
As noted above, storage efficiency is the determining this overhead the storage space required may be
factor for the applicability of an inter-file compresgreater than the size of the original corpus. As Fig-
sion approach. We report on the storage space uee 2 shows, the optimal expected chunk size depends
quired as a percentage of the original, uncompressstthe type of data; using 128-bit identifiers, the best
data set size. For example, stored data that is 2@f¥ficiencies range from 256 to 512 bytes.
the size of the original represents an efficiency ratio
of 5:1. The functionality and performance of eaciihe main configurable parameter in the case of delta
approach depends on the settings of a number of pacoding is the size of the sketches—i.e. the num-
rameters. As expected, experimental results indicdter of features used for resemblance detection. Our
that no single parameter setting provides optimal rexperimental results are consistent with what was re-
sults for all data sets. Thus, we first report on paramerted by Douglis et al.: a sketch size of 20 to 30 fea-
eter tuning for each approach and different data setses is sufficient to capture resemblance among files.
Then, using optimal parameters for each data set, weother parameter is theesemblance threshalthe

Chunking efficiency by divisor deltas. The reason is thgtips dictionary is more ef-

128-bit chunk IDs, min=32 bytes, max=65536 bytes

ficient across entire files than within the smaller indi-
160% vidual chunks, and chunk IDs appear as random (es-
2 ::: sentially non-compressible) data. But in the context
X R — . .| ofanarchival storage systeggigs advantage is not
€ o ~ likely to be as effective in practice; this is discussed
o e ———— below.
40%
22"” Non-textual data, such as the PowerPoint files with
%
% o B e, me chunking and delta (especially wigizip) achieve bet-
W T T ter efficiency tharmgzipalone. However, the achieved
Paper Archive (PDF) DRG 32114 PowerPoint . . .
—o-Linx22x logs 500 compression rates are less impressive than those for

the log data. For raster graphics, delta encoding with

Figure 2: Chunking efficiency by divisor size - . : .
gzipachieves modest improvement ogipalone.

number of features that must correspond between two .

files to consider that sufficient resemblance exists'f“osmgle users email directory and a mailing list

S . ; . rchive show little improvement when using delta.
justify calculating the delta instead of storing the e hunking is less effective thagzip although we

tire new file. For the evaluation of delta encodinqm ;
; . ould expect it to reduce redundancy found across
we traverse the target data set one file at a time In

a random order. For a file, a delta is created agairrlgwt'ple users’ data.
the file with the highest resemblance that is already in : ' .
. . n_most cases, inter-file compression outperforms
the output archive, as long the resemblance is abov? , . . S
a threshold of one corresponding feature. Otherwisg fa-file compression, especially when indvidual
the entire file is stored asF; newgr]eferencé file Sunks and deltas are internally compressed. Chunk-
' ing achieves impressive efficiency for large volumes
33 St Effici of very similar data. On the other hand, delta en-
: orage iciency coding seems better for less similar data. We be-

Table 1 shows the achieved storage efficiency by ti&e that this is due to the lower storage overhead

two approaches. We do that with and without addizquired for delta metadata. Typical sketch sizes of
tional zlib compression of chunks and deltas respegy 1, 120 bytes30to 30featuresx 4 bytes) for a file
tively. To establish a baseline for each data set, W,y size are significantly smaller than the overhead

create a singldar file from the data set, and theryt ohnk-based storage, which is linear with the size
compress it with an intra-file compression prograngs ine file.

gzip As expected (and as shown by the two first

rows of the table), inter-file compression improvegithough compressing a set of files into a singiep
with larger corpus sizes. This is not the case Wiffle to establish a baseline measurement helps illus-
gzip. trate how much redundancy might exist within a data

)]) . .set, it is not likely that an archival storage system
The HP Unix Logs (8,000 files) show very high simig,q1q reach those levels of efficiency for several rea-

larity. Chunk-based compression on this similar dad,s Most important is that files would be added
was reduced to 11% of the original data size, aRd an archival system over time and files would be
when each chunk is compressed usingalite(Simi- rerieved individually. If a new file were added to

lar togzip) compression, itis just 7.7% of the originaje archival store, it would not be stored as efficiently
size. Even more impressive are the reductions in siggjess the file could be incorporated into an existing

when using delta compression. When delta compregsmpressed file collection, i.e. the new file would

sion is used alone, the data set is reduced to 4%n‘éfed to be added to an existitay/gzip file. Like-

the original size, but when combined witlib COM"_ wise, retrieving a file would require first extracting it
pression, the compressed data is less than 1% of i 4 compressed collection and this would require
original size. additional time and resources over a chunk or delta-

. based file retrieval method.
Textual content, such as web pages, can be highly

similar. However, in the case of the HP ITRC congy; experiments measured the size of an entire cor-
tent, gzip compression is more efficient than chunkss i the form of aar file after it has been com-

ing or delta. More surprisinghgzip is better even p essed witlyzip Had we compressed each file with
when we do additional compression of chunks and

Data Set Size #Files | tar + | Chunk | Chunk | Delta Delta +
gzip + zlib zlib

HP Unix Logs 824 MB 500 | 15% 13% 5.0% 3.0% 1.0%
HP Unix Logs 13,664 MB | 8,000 | 14% 11% 7.7% 4.0% 0.94%
Linux 2.2 source (4 vers.) 255 MB | 20,400 | 23% 57% 22% 44% 24%
Email (single user) 549 MB 544 | 52% 98% 62% 84% 50%
Mailing List (BLU) 45 MB 46 | 22% 98% 53% 67% 21%
HP ITRC Web Pages 71MB | 4,751 | 16% 86% 33% 50% 26%
PowerPoint 14 MB 19 | 67% 55% 46% 38% 31%
Digital raster graphics 430 MB 83 | 42% 102% 55% 99% 42%

Table 1: Storage efficiency comparison (64-bit chunk IDs)

gzip first and then computed the aggregate size 4f Conclusions
all compressed files, the sizes fgzipcompressed |yier-file compression is emerging as a technique to
files would have been much larger. For example, jihnrove space efficiency in archival storage systems.
the case of the HP ITRC web pagegip efficiency This paper provides the first direct comparison of
would have been 30% of the original size, mucihe two main techniques proposed in the literature,
larger than the 16% shown in table 1, and larger thﬁamely chunking and delta encoding, and compares
the 26% that can be achieved by using delta comprggsym against traditional intra-file compression. In
sion withzlib. When delta compression (or toaless‘?jeneral, both chunking and delta encoding outper-
extgnt, chunking) is ap_plied across files first. and thefm gzip, especially when they are combined with
an intra-file compression method second, it is MOgmpression of individual chunks and deltas. Chunk-
effective than compressing large collections of daﬁqg is computationally cheap and can be easily used
because additional redundancy can be eliminated., gistributed systems. It works well for data with
very high similarity. Thus, it is applicable to appli-
34 Pperf cations where there are multiple versions of the same
) eriormance data, such as version control systems, and log files.
In practice, space efficiency is not the only factahn the other hand, delta encoding is more computa-
used to choose a compression technique; we briefyhally expensive, but more efficient with less simi-

discuss some important systems issues such as c@fdata and thus, it is potentially applicable to a wider
putation and I/0O performance. range of data sets.

The chunking approach requires less computation

than delta encoding. It requires two hashing opera-

tions per byte in the input file: one fingerprint ca|cuAcknowledgments

lation and one digest calculation. In contrast, delta

encoding requires+ 1 fingerprint calculations per

byte, wheres is the sketch size. It also requires cal-@wrence You was supported by a grant from

culating the deltas, even though this can be performgg@wlett-Packard Laboratories (via CITRIS), Mi-

efficiently, in linear time with respect to the size of th€"0soft Research, and supported in part by National

inputs. Additional issues with delta encoding includgecience Foundation Grant CCR-0310888. We thank

efficient file reconstruction and resemblance detdtave Eshghi and George Forman of Hewlett-Packard

tion in large repositories. Laboratories for their help and insight into the behav-
ior of file chunking. We are also grateful to members

The two techniques exhibit different /O pattern®f the Storage Systems Research Center at the Uni-

Chunks can be stored on the basis of their identifiesersity of California, Santa Cruz for their help prepar-

using a (potentially distributed) hash table. Thetgd this paper.

is no need for maintaining placement metadata and

hashing may work well in distributed environments.

However, reconstructing files may involve randor]:Qm:e'.enCes

I/0. In contrast, delta-encoded objects are whole ref-

erence files or smaller delta files, which can be stored; . ajtai, R. Burns, R. Fagin, D. D. E. Long, and

and accessed efficiently in a sequential manner. But, | stockmeyer. Compactly encoding unstructured in-

placement in a distributed infrastructure is more in- puts with differential compression.Journal of the

volved. ACM, 49(3):318-367, May 2002.

[2] A. Z. Broder, M. Charikar, A. M. Frieze, and

(3]

(4]

(5]

(6]

(7]

(8]

Bl

[10]

[11]

M. Mitzenmacher. Min-wise independent permuta-
tions. Journal of Computer and Systems Sciences
60(3):630-659, 2000.

F. Douglis and A. lyengar. Application-specific delta-
encoding via resemblance detection. Aroceedings
of the 2003 USENIX Annual Technical Conference
San Antonio, Texas, June 2003.

P. Lyman, H. R. Varian, K. Searingen,
P. Charles, N. Good, L. L. Jordan, and J. Pal.

How much information? 2003. http:
/lwww.sims.berkeley.edu/research/
projects/how-much-info-2003/ , Oct.
2003.

J. P. MacDonald. File system support for delta com-
pression. Master's thesis, University of California at
Berkeley, 2000.

J. Mogul, F. Douglis, A. Feldmann, and B. Krishna-
murthy. Potential benefits of delta-encoding and data
compression for HTTP. IfProceedings of the Con-
ference on Applications, Technologies, Architectures,
and Protocols for Computer Communication (SIG-
COMM '97), Sept. 1997.

A. Muthitacharoen, B. Chen, and D. Mazes. A
low-bandwidth network file system. IRroceedings

of the 18th ACM Symposium on Operating Systems
Principles (SOSP '01)pages 174-187, Lake Louise,
Alberta, Canada, Oct. 2001.

C. Policroniades and I. Pratt. Feasibility of data com-
pression by eliminating repeated data in practical file
systems. First Year Report.

S. Quinlan and S. Dorward. Venti: A new approach
to archival storage. In D. D. E. Long, editdpro-
ceedings of the 2002 Conference on File and Storage
Technologies (FASTpages 89-101, Monterey, Cali-
fornia, USA, 2002. USENIX.

M. O. Rabin. Fingerprinting by random polynomials.
Technical Report TR-15-81, Center for Research in
Computing Technology, Harvard University, 1981.

W. F. Tichy. RCS—a system for version control.
Software—Practice and Experiencks(7):637-654,
July 1985.

