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Abstract 

Inexpensive storage and more powerful processors have re- 
sulted in a proliferation of data that needs to be reliably 
backed up. Network resource limitations make it increas- 
ingly difficult to backup a distributed file system on a nightly 
or even weekly basis. By using delta compression algo- 
rithms, which minimally encode a version of a file using only 
the bytes that have changed, a backup system can compress 
the data sent to a server. With the delta backup technique, 
we can achieve significant savings in network transmission 
time over previous techniques. 

Our measurements indicate that file system data may, on 
average, be compressed to within 10% of its original size 
with this method and that approximately 45% of all changed 
files have also been backed up in the previous week. Based 
on our measurements, we conclude that a small file store on 
the client that contains copies of previously backed up files 
can be used to retain versions in order to generate delta files. 

To reduce the load on the backup server, we implement a 
modified version storage architecture, version jumping, that 
allows us to restore delta encoded file versions with at most 
two accesses to tertiary storage. This minimizes server work- 
load and network transmission time on file restore. 

1 Introduction 

Currently, file system backup takes too long and has a pro- 
hibitive storage cost. Resource constraints impede the reli- 
able and frequent backup of the increasing amounts of data 
spinning on disks today. The time required to perform back- 
up is in direct proportion to the amount of data transmitted 
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over the network from backup clients to a backup server. By 
using delta compression, compactly encoding a file version 
as a set of changes from a previous version, our backup sys- 
tem architecture reduces the size of data to be transmitted, 
reducing both time to perform backup and storage required 
on a backup server. 

Backup and restore can be limited by both network band- 
width, often 10 Mb/s, and poor throughput to tertiary storage 
devices, as slow as 500 KBls to tape storage. Since resource 
limitations frequently make backing up changed files infca- 
sible over a single night or even weekend, delta file com- 
pression has great potential to alleviate bandwidth problems 
by using available client processor cycles and disk storage to 
reduce the amount of data transferred. This technology cn- 
ables us to perform file backup over lower bandwidth chan- 
nels than were previously possible, for example a subscrip 
tion based backup service over the Internet. 

Early efforts to reduce the amount of data to bc backed up 
produced a simple optimization, incremental backup, which 
backs up only those files that have been modified since the 
end of the last epoch, the period betsvcen two backups. While 
incremental backup only detects changes at the granularity 
of a file, delta backup refines this concept, transmitting only 
the altered bytes in the files to be incrementally backed up 
[12]. Consequently, if only a few bytes arc modified in a 
large file, the backup system saves the expense of transmit- 
ting the large file in favor of transmitting only the changed 
bytes. 

Recent advances in differencing algorithms [ 1,4], allow 
nearly optimally compressed encodings of binary inputs in 
linear time. We use such an algorithm to generate delta cn- 
codings of versions. 

A differencing algorithm finds and outputs the changes 
made between two versions of the same file by locating com- 
mon strings to be copied and unique strings to be added cx- 
plicitly. A delfafire (A) is the encoding of the output of a 
differencing algorithm. An algorithm that creates a delta file 
takes as input two versions of a file, a rej%rencefile and a ver- 
sionjle to be encoded, and outputs a delta file rcprcscnting 
the modifications made between versions: 



Reconstruction, the inverse operation, requires the reference 
file and a delta file to rebuild a version: 

A backup system can leverage delta files to generate min- 
imal file representations (see Figure 1). We enhanced the 
client/server architecture of the AdStar Distributed Storage 
Manager (ADSM) backup system [5] to transmit delta files 
when a backup client has retained two versions of the same 
file. Furthermore, both uncompressed files and delta en- 
coded files still realize benefits from the standard file com- 
pression methods that ADSM already utilizes [I]. We inte- 
grate delta backup into ADSM and have a backwardly com- 
patible system with optimizations to transmit and store a re- 
duced amount of data at the server. 

The server storage and network transmission benefits are 
paid for in the client processor cycles to generate delta files 
and in additional disk storage at a backup client to retain sec- 
ond copies of files that are used to generate delta files. This 
architecture optimizes the network and storage bottleneck at 
the server in favor of the distributed resources of a server’s 
multiple clients. 

We will describe previous work in the use of delta com- 
pression for version storage in $2. Our modiications to the 
ADSM system architecture are presented in 53. In 54, we 
describe the delta storage problem in the presence of a large 
number of versions. In $5, we analyze the performance of 
the version jumping storage method and compare it to the 
optimally compact storage method of linear delta chains. In 
56 potential future work is discussed and we present our con- 
clusions in $7. 

2 Origins of Delta Backup 

Delta backup emerged from many applications, the first in- 
stance appearing in database technology. The database pages 
that are written between backup epochs are marked as “dirty’ 
using a single bit [ 10, 173. At the end of an epoch, only 
the dirty pages need to be backed up. This concept paral- 
lels delta backup but operates only at page granularity. For 
file systems, there are no guarantees that modifications have 
page alignment. While dirty bits are effective for databases, 
they may not apply well to file system backup. 

To improve on the granularity of backup, logging meth- 
ods have been used to record the changes to a database [9, 
141 and a file system [16]. A logging system records every 
write during an epoch to a log file. This can be used to re- 
cover the version as it existed at the start of an epoch into its 
current state. While semantically similar to delta compres- 
sion, logging does not provide the compressibility guaran- 
tees of differencing algorithms. In the database example, a 
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log or journal of changes grows in proportion to the number 
of writes made. If the same bytes are modified more than 
once or if adjacent bytes are modified at different times, this 
will not be a minimal representation. For an extremely active 
page, the log will likely exceed the page size. Differential 
compression also has the guarantee that a log of modifica- 
tions to a tile will be no smaller than the corresponding delta 
[41. 

Recently, several commercial systems have appeared on 
the marketplace that claim to perform delta backup [ 1 I, 6, 
181. While the exact methods these systems use have not 
been disclosed, the product literature implies that they either 
perform logging [ 1 I] or difference at the granularity of a file 
block [18, 61. We perform delta backup at the granularity 
of a byte. By running differential compression algorithms 
on the changed versions at this granularity, we generate and 
backup minimal delta files. 

2.1 Previous Work in Version Management / 

Despite file restoration being the infrequent operation for 
backup and restore, optimizing this process has great util- 
ity. Often, restore is performed when file system compo- 
nents have been lost or damaged. Unavailable data and non- 
functional systems cost businesses, universities and home 
users lost time and revenue. This contrasts the backup oper- 
ation which is generally performed at night or in other low 
usage periods. 

Restoring files that have been stored using delta backup 
generates additional concerns in delta file management. Tra- 
ditional methods for storing deltas require the decompres- 
sion agent to examine either all of the versions of a given 
file [ 131 or all versions in between the first version and the 
version being restored [15]. In either case, the time to re- 
construct a given file grows at least linearly (see $4.1) with 
respect to the number of versions involved. 

A backup system has the additional limitation that any 
given delta file may reside on a physically distinct media 
device and device access can be slow, generally several sec- 
onds to load a tape in a tape robot [8]. Consequently, having 
many distinct deltas participate in the restoration of a single 
file becomes costly in device latency. An important goal of 
our system is to minimize the number of deltas participating 
in any given restore operation. 

Previous efforts in the efficient restoration of file versions 
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have provided restoration execution times independent of the 
number of intermediate versions. These include methods 
based on AM Dags [7], linked data structures [19, 21, or 
string libraries [3]. However, these require all delta versions 
of a given file to be present at restore time and are conse- 
quently infeasible for a backup system. Such a backup sys- 
tem would require all prior versions of a file to be recalled 
from long term storage for that file to be reconstructed. 

As previous methods in efficient restoration fail to ap- 
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Figure 1: Client/server schematic for a delta backup system. 

ply to the backup and restore application, we describe a new 
technique called version jumping and an associated system 
architecture. Version jumping takes many delta versions off 
of the same reference version and consequently requires at 
most two files to perform the restore operation on a given 
version. The restoration time is also independent of the total 
number of stored versions. 

3 System Architecture 

We modified the architecture and design of the AdStar Dis- 
tributed Storage Manager (ADSM) from IBM to add delta 
compression capabilities. The modified ADSM client delta 
compresses file data at the granularity of a byte and trans- 
mits delta files to the server. The modified ADSM server has 
enhanced file deletion capabilities to ensure that each delta 
file stored on the server also has the corresponding reference 
file. 

ADSM is a client/server backup and restore system cur- 
rently available for over 30 client platforms. The ADSM 
server is available for several operating systems including 
Windows NT and various UNIX and mainframe operating 
systems. The key features of ADSM are scheduled policy 
management for file backup, both client request and server 
polling, and hierarchical storage management of server me- 
dia devices including tape, disk drive and optical drives. 

3.1 Delta Compression at the Client 

We have modified the standard ADSM client to perform delta 
backup and restore operations. The modifications include 
the differencing and reconstruction algorithms (see 3 1) and 
the addition of a referencefile store. 

In order to compute deltas, the current version of the file 
must be compared with a reference version. We have the 
choice of storing the reference version on the client or fetch- 
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ing it from the server. Obtaining the reference file from the 
server is unviable since it would increase both network traf- 
fic and server load, adversely affecting the time to perform 
the backup. By storing the reference file at the client, WC in- 
cur a small local storage cost in exchange for a large benefit 
in decreased backup time. 

We considered several options for maintaining the refcr- 
ence files, including copy-on-write, shadowing, and file sys- 
tem logging. Each of these options had to be rejected since 
they violated the design criterion that no file system modifi- 
cations could be made. Since ADSM supports more than 
30 client operating systems, any file system modification 
presents sign&ant portability and maintenance concerns. 
Instead, we chose to keep copies of recently backed up files 
in a reference file store. 

The reference file store is a reserved area on disk whcrc 
reference versions of files are kept (see Figure 1). When 
sending an uncompressed file to its server, the backup client 
copies this file to its reference file store. At this point, the file 
system holds two copies of the same file: one active version 
in fde system space and a static reference version in the rcf- 
erence file store. When the reference file store fills, the client 
selects a file to be ejected. We choose the victim file with a 
simple weighted least recently used (LRU) tcchniquc, In a 
backup system, many files are equally old, as they have been 
backed up at the same epoch. In order to discern among 
these multiple potential victims, our backup client uses an 
additional metric to weight tiles of equal LRU value WC 
select as a victim the reference file that achieved the worst 
relative compression on its previous usage, i.e. the file with 
the highest delta file size to uncompressed file size ratio at 
the last backup. This allows us to discern from many potcn- 
tial victims to increase the utility of our refercnco file store, 
At the same time, this weighting does not violate the tried 
and true LRU principle and consequently can bc cxpcctcd to 
realize all of the benefits of locality. 
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Figure 2: Fraction of files modiied today also modified 1,4 
and 7 days ago. 

When the backup client sends a file that has a prior ver- 
sion in the reference file store, the client delta compresses 
this file and transmits the delta version. The old version of 
the file is retained in the reference file store as a common 
reference tile for a version jumping system. 

We do not expect the storage requirements of the refer- 
ence file store to be excessive. In order to evaluate the ef- 
fectiveness of the reference file store, we collected data for 
five months from the file servers at the School of Engineer- 
ing at the University of California, Santa Cruz. Each night, 
we would search for all files that had either been modified 
or newly created during the past 24 hours. Our measure- 
ments indicate that of approximately 2,356,400 files, less 
than 0.55% are newly created or modiied on an average day 
and less than 2% on any given day. These recently modified 
files contain approximately 1% of the file system data. 

In Figure 2, we estimate the effectiveness of the reference 
file store using a sliding window. We considered windows of 
l-7 days. The z-axis indicates the day in the trace, while the 
y-axis denotes the fraction of files that were modiied on that 
day and that were also created or modified in that window. 
Files that are not in the window are either newly created or 
have not been modified recently. An average of 45% and a 
maximum of 87% of files that are modified on a given day 
had also been modified in the last 7 days. This locality of file 
system access verifies the usefulness of a reference file store 
and we expect that a small fraction, approximately 5%, of 
local file system space will be adequate to maintain copies 
of recently modified file versions. 

3.2 Delta Versions at the Server 

In addition to our client modifications, delta version stor- 
age requires some enhanced file retention and file garbage 
collection policies at a backup server, For example, a naiive 

server might discard the reference files for delta files that can 
be recalled. The files that these deltas encode would then be 
lost from the backup storage pool. The file retention poli- 
cies we will describe require additional metadata to resolve 
the dependencies between a delta file and its corresponding 
reference file. 

A backup server accepts and retains files from backup 
clients (see Figure 1). These files are available for restora- 
tion by the clients that backed them up for the duration of 
their residence on the server. Files that are available for 
restoration are active tiles. A typical file retention policy 
would be: “hold the four most recent versions of a file.” 
While file retention policies may be far more complex, this 
turns out to have no bearing on our analysis and consequent 
requirements for backup servers. We only concern ourselves 
with the existence of deletion policies on an ADSM server 
and that files on the server are only active for a finite number 
of backup epochs. 

To reconstruct a version file to a client from a backup 
server, when the server has a delta encoding of this file, the 
client must restore both the delta encoding and the corre- 
sponding reference file. Under this constraint, a modified 
retention policy dictates that a backup server must retain all 
reference files for its active files that are delta encoded. In 
other words, a file cannot be deleted from the backup server 
until all active files that use it as a reference file have also 
been deleted. This relationship easily translates to a depen- 
dency digmph with dependencies represented by directed 
edges and files by nodes. This digraph is used both to encode 
dependent files which need to bc retained and to garbage col- 
lect the reference files when the referring delta versions are 
deleted. 

For a version chain storage scheme, we may store a delta 
file, AA*,A~, which depends on file AZ. However, the backup 
server may not store AZ. Instead it stores a delta file repre- 
sentation. In this event, we have AA~,A~ depend upon the 
delta encoding of As, AA, ,A* (see Figure 3(a)). 

The dependency digraphs for delta chains never branch 
and do not have cycles. Furthermore, each node in the di- 
graph has at most one inbound edge and one outbound edge. 
In this example, to restore file Al, the backup server needs 
to keep its delta encoding, AA*,A~, and it needs to be able 
to construct the file it depends upon, AZ. Since, we only 
have the delta encoding of AZ, we must retain this encod- 
ing, AA,,A~, and all files it requires to reconstruct A2. The 
obvious conclusion is: given a dependency digraph, to re- 
construct the file at a node, the backup server must retain all 
files in nodes reachable from the node to be reconstructed. 

For version jumping, as in version chains, the version 
digraphs do not branch. However, any node in the version 
digraph may have multiple incoming edges, i.e. a file may 
be a common reference file among many deltas (see Figure 
3(b)). 

The dependency digraphs for both version jumping and 



(a) Simple delta chain. 
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(b) Jumping version chain. 

Figure 3: Dependency graphs for garbage collection and 
server deletion policies. 

delta chains are acyclic. This results directly from delta 
tiles being generated in a strict temporal order; the refer- 
ence file for any delta file is always from a previous backup 
epoch. Since these digraphs are acyclic, we can implicitly 
solve the dependency problem with local information. We 
decide whether or not the node is available for deletion with- 
out traversing the dependency digraph. This method works 
for all acyclic digraphs. 

At each node in the dependency digraph, i.e. for each 
file, we maintain a pointer to the reference file and a refer- 
ence counter. The pointer to the reference file indicates a 
dependency; a delta encoded version points to its reference 
file and an uncompressed file has no value for this pointer. 
The reference counter stores the number of inbound edges 
to a node and is used for garbage collection. A node has no 
knowledge of what files depend on it, only that dependent 
files exist. 

When backing up a delta file, we require a client to trans- 
mit its file identifier and the identifier of its reference file. 
When we store a new delta file at the ADSM server, we store 
the name of its reference file as its dependent reference and 
initialize its reference counter to zero. We must also update 
the metadata of the referenced file by incrementing its refer- 
ence counter. With these two metadata fields, the modiied 
backup server has enough information to retain dependent 
files and can guarantee that the reference files for its active 
files are available. 

3.3 Two-phase deletion 

When storing delta files, the backup server often needs to 
retain files that are no longer active. We modify deletion in 
this system to place files into three states: active files, inac- 
tive dependent files, and inactive independent files. Inactive 
dependent files are those files that can no longer be restored 
as a policy criterion for deletion has been met but need to bc 
retained as active delta versions depend on them. Inactive 
independent files are those files suitable for removal from 
storage as they cannot be restored and no active delta files 
depend on them. 

We add one more piece of metadata, an activity bit, to 
each file backed up on our server. When a file is received 
at the sewer, it is stored as usual and its activity bit is set. 
This file is now marked as active. The backup server implc- 
ments deletion policies as usual. However, when a file rc- 
tention policy indicates that a file can no longer be restored, 
we clear the file’s activity bit instead of deleting it. Its state 
is now inactive. Clearing the activity bit is the first phase of 
deletion. If no other files depend on this newly inactive file, 
it may be removed from storage, the second phase. 

Marking a file inactive may result in other files becoming 
independent as well. The newly independent reference file is 
garbage collected through the reference pointer of the delta 
file. The following rules govern file deletion: 

l When a file has no referring deltas, i.e. its rcfcrcncc 
counter equals zero, delete the file. 

l When deleting a delta file, decrement the refercncc 
counter of its reference file and garbage collect the rcf- 
erence file if appropriate. 

Reference counting, reference file pointers, and activity 
bits correctly implement the reachability dependence rela- 
tionship. The two phase deletion technique operates locally, 
never traversing the implicit dependency digraph, and con- 
sequently incurs little execution time overhead. The backup 
server only traverses this digraph when restoring files, It 
follows dependency pointers to determine the set of files rc- 
quired to restore the delta version in question. 

4 Delta Storage and Transmission 

The time to transmit files to and from a server is directly pro- 
portional to the amount of data sent. For a delta backup and 
restore system, the amount of data is also related to the man- 
ner in which delta files are generated. We develop an analy- 
sis to compare the version jumping storage method with stor- 
ing delta files as version to version incremental changes. WC 
show that version jumping pays a small compression penalty 
for file system backup when compared to the optimal linear 
delta chains. In exchange for this lost compression, version 
jumping allows a delta file to be rebuilt with at most two 
accesses to tertiary storage. 
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The version storage problem for backup and restore dif- 
fers due to special storage requirements and the distributed 
nature of the application. Since AJXM stores files on mul- 
tiple and potentially slow media devices, not all versions of 
a file are readily available. This unavailability and other de- 
sign considerations shape our methods for storing delta ver- 
sions. If a backup system stores files on a tape robot then, 
when reconstructing a file, the server may have to load a 
separate tape for every delta it must access. Access to each 
tape may require several seconds. Consequently, multiple 
tape motions are intolerable. Our version jumping design 
guarantees that at most two accesses to the backing store are 
needed to rebuild a delta file. 

Also, we minimize the server load by performing all of 
the differencing tasks on the client. Since a server processes 
requests from many clients, a system that attempted to run 
compression algorithms at this location would quickly be- 
come processor bound and achieve poor data throughput. 
For client side differencing, we generate delta files at the 
client and transmit them to the server where they are stored 
unaltered. Using client differencing, the server incurs no ad- 
ditional processor overhead. 

4.1 Linear Delta Chains 

Serializability and lack of concurrency in file systems result 
in each file having a single preceeding and single following 
version. This linear sequence of versions forms a history of 
modifications to a file which we call a version chain. We 
now develop a notation for delta storage and analyze a linear 
version chain stored using traditional methods [15]. 

Linear delta chains are the most compact version storage 
scheme as the inter-version modification are smallest when 
differencing between consecutive versions. We will use the 
optimal@ of linear delta chains later as a basis to compare 
the compression of the version jumping scheme. 

We denote the uncompressed ith version of a file by 
Vi. The difference between two versions Vi and Vi is in- 
dicated by A(,,,). The file A(K,v~) should be considered 
the differentially compressed encoding of Vj with respect to 
Vi such that Vj can be restored by the inverse differencing 
operation applied to Vi and A(% ,Q) . We indicate the differ- 
encing operation by 

and the inverse differencing or reconstruction operation by 

By convention, Vi is created by modification of Vi-l. For 
versions Vi and Vj in a linear version chain, these versions 
are adjacent if they obey the property j - i = 1 and an 
intermediate version Vk obeys the property i < L < j. 

For our analysis, we consider a linear sequence of ver- 
sions of the same file that continues indefinitely, 

vl,%... ,K-1,%K+1,... . 

The traditional way to store this version chain as a series 
of deltas is, for two adjacent versions Vi and Vi+l, to store 
the difference between these two files,-Avi,vi+, [13]. This 
produces the following “delta chain” 

Under this system, to reconstruct an arbitrary version J$, the 
algorithm must apply the inverse differencing algorithm re- 
cursively for all intermediate versions 2 through i. This re- 
lation can be compactly expressed as a recurrence. Vi rep- 
resents the contents of the ith version of a file and & is the 
recurrent file version. So when rebuilding Vi, Vi = & and 

Ri = ~-l(A(vl.-l,v&L~); RI = K. 

The time required to restore a version depends upon the time 
to restore all of the intermediate versions. In general, restora- 
tion time grows linearly in the number of intermediate ver- 
sions. In a system that retains multiple versions, the cost of 
restoring the most remote version quickly becomes exorbi- 
tant. 

4.2 Reverse Delta Chains 

Some version control systems solve the problem of long delta 
chains with reverse delta chain storage [15]. A reverse delta 
chain keeps the most recent version of a file present and un- 
compressed. The version chain is then stored as a set of 
backward deltas. For most applications, the most recent ver- 
sions are accessed far more frequently than older versions 
and the cost of restoring an old version with many interme- 
diate versions is offset by the low probability of that version 
being requested. 

We have seen that linear delta chains fail to provide ac- 
ceptable performance for delta storage (see $4.1). Our de- 
sign constraints of client-side differencing and two tape ac- 
cesses for delta restore also eliminate the use of reverse delta 
chains. We show this by examining the steps taken in a re- 
verse delta system to transmit the next version to the backup 
server. 

At some point, a server stores a reverse delta chain of the 
form 

In order to backup its new version of the file, V&, the 
client generates a difference file, A(vn,v,,+l) and transmits 
this difference to the server. However, this delta is not the file 
that the server needs to store. It needs to generate and store 



A(v,+~,~,). Upon receiving A~v,,,v,++ the server must ap- 
ply the difference to V, to create Vn+l and then run the dif- 
ferencing algorithm to create A(v,+r,v,). To update a single 
version in the reverse delta chain, the server must store two 
new files, recall one old file, and perform both the differ- 
encing and reconstruction operations. Reverse delta chains 
fail to meet our design criteria as they implement neither 
minimal server processor load nor reconstruction with the 
minimum number of participating files. 

4.3 Version Jumping Delta Chains 

Our solution to the version storage implements what we call 
jumpirlg deltas. This design uses a minimum number of files 
for reconstruction and performs differencing on the backup 
client. 

In a version jumping system, the server stores versions in 
a modified forward delta chain with an occasional whole file 
rather than a delta. Such a chain looks like: 

K, A(v,,vz), A(v,,vs), - - - , A(K,I+-~% A,,,,,,,, . - - 

Storing this sequence of files allows any given version to be 
reconstructed by accessing at most two files from the version 
chain. 

When performing delta compression at the backup client, 
the files transmitted to the server may be stored directly with- 
out additional manipulation. This immediate storage at the 
server limits the processor overhead associated with each 
client session and optimizes the backup server. 

An obvious concern with these methods is that one ex- 
pects compression to degrade when taking the difference be- 
tween two non-adjacent versions, i.e. for versions Vi and 
Vj, IA(vi,~jjl’ increases as j - i increases. Since the com- 
pression is likely to degrade as the version distance, j - i, 
increases, we require an occasional whole file to limit the 
maximum version distance. This raises the question: what is 
the optimal number of versions between whole files? 

5 Performance Analysis 

We analyze the storage and transmission cost of backing up 
files using a version jumping policy. We already know that 
version jumping far outperforms other version storage meth- 
ods on restore, since it requires only two files to be accessed 
from tertiary storage to restore a delta file. Now, by showing 
that the compression loss with version jumping is small as 
compared to linear delta chains, the optimal storage method 
for delta compression, we conclude version jumping to be a 
superior policy. 

The analysis of transmission time and server storage is 
identical, since our backup server immediately stores all files, 

‘For a file If, we use IV1 to denote the size of the file. Since files are 
one dimensional streilllls of bytes, this is synonymous to the length of V. 
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including deltas, that it receives and transmission time is in 
direct proportion to the amount of data sent. We choose to 
examine storage for ease of understanding the contents of 
the backup server at any given time and use this analysis to 
draw conclusions about transmission times as well. 

5.1 Version Jumping Chains 

Consider a set of versions, V’, . . . , Vi,. . . , where any two 
adjacent versions, Vi and Vi+l, have QIV~] modified symbols 
between them, The parameter 01 represents the compressibil- 
ity between adjacent versions. An ideal differencing algo- 
rithm can create a delta file, A(v~,v~+,), with maximum size 
cxlVi\. The symbols encoded in a delta file can either replace 
existing symbols or add data to the file, as all reasonable en- 
codings do not mark deleted symbols [l]. The compression 
achieved on version Vi is given by 

Since we are considering the relative compressibility of all 
new versions with the same size deltas, the deha fiIe can 
be as large as size cxIVil and the new version ranges in size 
from IVil to (1 f cr)lV;l. Consequently, the worst case com- 
pression occurs when the ~$41 modified symbols in V&I 
replace existing symbols in V;:, i.e. IVil = IV&.lI. The worst 
case occurs when the file stays the same size. 

Between versions Vi and V&l, there are a maximum of 
cx]ViI modified symbols and between versions Vi+1 and V&.2 
there are at most a!lV&~ 1 modified symbols. By invoking the 
union bound on the number of modified symbols bctwcen 
versions Vi and T/+-J, there are at most 2o$4l modified sym- 
bols, assuming worst case compression. This occurs when 
the changed symbols between versions are disjoint and the 
versions are the same size. Generalizing this argument to 
n intermediate versions, we can express the worst case size 
of the jumping delta between VI and V, as nculV11. Having 
defined the size of an arbitrary delta, we can determine how 
much storage is required to store a linear set of n versions 
using the jumping delta technique 

is2 \ f=2 / 

We are also interested in determining the optimal number 
of jumping deltas to be taken between whole files. WC do 
this by minimizing the average cost of storing a version ns a 
function of n, the number of versions between whole files, 
The average cost of storing an arbitrary version is 

S(n) S(n) < Ml =----(&-cun-2a+2). (2) 
n 

This function has a minimum with respect to n at 

. (3) 
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Figure 4: The per version transmission and storage cost in the worst case parameterized by compression (cY). 

Equation 2 expresses the worst case per version storage 
cost, and consequently the per version transmission cost, of 
keeping delta files using version jumping. For any given 
value of a, the optimal number of jumping deltas between 
uncompressed versions is given by the minimum of Equa- 
tion 2. We give a closed form solution to this minimum in 
Equation 3. 

Figure 4 displays both the version storage cost parame- 
terized by o and the minimum of this family of curves as 
a function of (Y. We see that for large values of n, version 
jumping provides poor compression, as the version distance 
increases and the compression degrades as expected. How- 
ever, there is an optimal number of versions, depending upon 
compressibility, at which version jumping performs reason- 
ably. When the number of transmitted versions exceeds the 
number at which the storage cost is minimum (see Equa- 
tion 3), the system’s best decision is to transmit the next file 
without delta encoding and start a new version jumping se- 
quence. 

Our analysis is the worst case compression bound. In 
practice, we expect to achieve much better compression, as 
the version to version changes will not be completely dis- 
joint and files will both grow and shrink in size. 

Also, we cannot expect to detect the minimum of the stor- 
age and transmission curve analytically, since (Y will not be 
constant. Instead, a backup client that implements version 
jumping monitors the size of the delta files as compared to 
the corresponding uncompressed files. When the average 
compression, total bytes in transmitted files over total bytes 
in uncompressed files, stops decreasing, compression is de- 
graded past a miniium, similar to the curve in Equation 2. 
At this point the client transmits a new uncompressed file to 
start a new jumping version chain. This minimum could be 

local, as this policy is only a heuristic for detecting the min- 
imum. However, in general, files differ more as the version 
distance increases and the heuristic will detect the global 
minimum. 

5.2 Linear Delta Chains 

Having developed an expression for the worst case per ver- 
sion storage cost for version jumping (see $5. l), we do the 
same for linear delta chains. Recall that linear delta chains 
are not suitable for backup and restore (see $4.1) but they 
do provide a bound on the best possible compression perfor- 
mance of a a version storage architecture. Version jumping 
provides constant time reconstruction of any version. To re- 
alize this efficient file restore, we trade a small fraction of 
potential compression. We quantify this loss of compres- 
sion with respect to the optimally compressing linear delta 
chains. 

We bound compression degradation by deriving an ex- 
pression for the per version storage cost under a linear delta 
chain and comparing this to Equation 2. The limited loss 
iir compression for version jumping is offset by decreased 
restore time and we conclude that version jumping is the su- 
perior policy for backup and restore. 

Several facts about the nature of delta storage for backup 
and restore apply to our analysis. First, a backup and re- 
store storage system must always retain at least one whole 
file in order to be able to reconstruct versions. Addition- 
ally, a backing store holds a bounded number of file system 
backups. We let the number of backup versions retained be 
given by the parameter n and can then say that, for any file, a 
backing store must retain at least one uncompressed version 
of that file and at most n - 1 deltas based on that uncom- 
pressed version. 
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We derive an expression for the amount of storage used 
by a linear delta chain. The minimal delta chain on n files 
contains some reference file of size IVlj and n - 1 delta 
files of size ajVjl for all j between 1 and n - 1. Using 
the same assumptions about version to version modifications 
that were used in Section 5.1, the total storage required for 
an n version linear delta chain is given by: 

C(n) = 1% I + 2 lA(vi-1 *vi) 15 I& I (I+ (n - l)a) e 
i=2 

(4) 

and the average storage required for each version is: 

+) = Co < I&l -y (1+ (n - l)cr). (5) n 

In Figure 5, we compare the relative per file cost of stor- 
ing versions in a linear delta chain with the per version stor- 
age cost of version jumping. Based on experimental results 
[4], we chose cy = 0.01 and a = 0.1 as a low and a high 
value for the compressibility of file system data. We note 
that the version jumping and delta chain storage curves are 
nearly identical for small values of n. For large values of n, 
the compression of version jumping degrades and the curves 
diverge. However, at these larger values of n, the restore 
time with delta chains grows linearly larger with the number 
of versions (see 54.1). In addition to the asymptotic growth 
of the restore function, linear chains also require multiple ac- 
cesses to slow media devices, which compounds the restore 
problem. As the number of intermediate versions stored 
grows, the restore cost quickly renders linear version chain 
storage intolerable. 
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For both delta chains and version jumping, the number of 
intermediate versions will need to be kept small. In version 
jumping it is desirable to pick the largest value of n less than 
or equal to the minimum value of the storage function (see 
Equation 3). For linear delta chains n must be kept small to 
make file restore times reasonable as restore time grows in 
the size of the versions and retrieving these files generally 
requires access to slow tape devices. At these small values 
of n, version jumping is a superior policy as it compresses 
nearly as well and requires two tape accesses to restore n file. 

Fortunately, backup and restore applications generally rc- 
quire few versions of a file to be stored at any given time. 
An organization that retains daily backups for a week and 
weekly backups for a month would be considered to have 
a very aggressive backup policy. This contiguration would 
make n valued at 9. For the majority of configurations, n 
will take on a value between 2 and 10. While some appli- 
cations may exist that require more versions, the cxpcnsc 
of storage and storage management combined with data bc- 
coming older and consequently less pertinent tends to limit 
the number of versions kept in a backup system. 

Au operational jumping delta backup system will pcr- 
form much better than this worst case analysis as many of 
the worst case factors are not realized on file system data. In 
particular, the modifications from version to version will not 
be completely disjoint and versions of a file should change in 
size. Consequently, we conclude that our system can main- 
tain more deltas between whole files than this analysis spcc- 
ifies. Worst case analysis does allow us to assert the viability 
of a version jumping system. As the worst case bounds arc 
plausible for the application, a delta backup system improves 
on these bounds providing a viable backup architecture. 



6 Future Work 

While maintaining a reference file store allows recent ver- 
sion modifications to be stored in a small fraction of the file 
system space, large files presents a concern as they may con- 
sume significant storage space in the reference file store. We 
believe that there is merit to considering block based refer- 
ence file storage schemes, combined block and file storing, 
and finally, using digital signatures to compactly “copy” a 
representation of large files and files that have been ejected 
from the reference file store. 

The reference store could choose to copy blocks rather 
than files. This would allow only the modified blocks in a 
changed file to be duplicated in the reference store. While 
this may mitigate the large file problem, it prevents a dif- 
ferencing algorithm from detecting changes in multi-block 
tiles that are not block aligned. The reference store could 
instead choose to save whole files for most files and only 
store blocks for large files. Such a combined scheme could 
heuristically address both the large file and block alignment 
issues. Finally, to save storage on large files, the file blocks 
could be uniquely identified using digital signatures. This 
greatly reduces the storage cost but only permits delta files 
to be calculated at a block granularity. 

Our version jumping technique allows delta files to be re- 
stored with two accesses to the backup server storage pool. 
Generally, this means that two tapes must be loaded, each 
requiring several seconds. However, a backup server that 
could collocate delta files and reference files on the same 
tape could access both files by loading a single tape. Collo- 
cation of delta files would provide a sign&ant performance 
gain for file restore but would require extra tape motions 
when files are backed up or migrated from a different storage 
location. 

7 Conclusions 

By using delta file compression, we modiied ADSM to send 
compact encodings of versioned data reducing both the net- 
work transmission time and the server storage cost. We have 
presented an architecture based on the version jumping met- 
hod for storing delta files at a backup server, where many 
delta files are generated from a common reference file. We 
have shown that version jumping far outperforms previous 
methods for tile system restore, as it requires only two ac- 
cesses to the server store to rebuild delta files. At the same 
time, version jumping pays only small compression penal- 
ties when generating delta files for file system backup. 

Previous methods for efficient restore were examined and 
determined to not fit the problems requirements as they re- 
quire all delta files to be available simultaneously. Methods 
based on delta chains may require as many accesses to the 
backing store as there are versions on the backup server. As 
any given file may reside on physically distinct media, and 

access to these devices may be slow, previous methods failed 
to meet the special needs of delta backup. We then conclude 
that version jumping is a practical and efficient way to limit 
restore time by making small sacrifices in compression. 

Modifications to both the backup client and server help 
support delta backup. We described a system where the 
client maintains a store of reference files so that delta files 
may be generated for transmission and storage. We have 
also described enhanced file deletion and garbage collection 
policies at the backup server. The server determines which 
files are dependent, those inactive files that must be retained 
in order to reconstruct active delta files. 
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