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Abstract—Digital archives are growing rapidly, necessitating
stronger reliability measures than RAID to avoid data loss from
device failure. Mirroring, a popular solution, is too expensive
over time. We present a compromise solution that uses multi-level
redundancy coding to reduce the probability of data loss from
multiple simultaneous device failures. This approach handles
small-scale failures of one or two devices efficiently while still
allowing the system to survive rare-event, larger-scale failures of
four or more devices.

In our approach, each disk is split into a set of fixed size
disklets which are used to construct reliability stripes. To protect
against rare event failures, reliability stripes are grouped into
larger super-groups, each of which has a corresponding super-
parity; super-parity is only used to recover data when disk failures
overwhelm the redundancy in a single reliability stripe. Super-
parity can be stored on a variety of devices such as NV-RAM
and always-on disks to offset write bottlenecks while still keeping
the number of active devices low.

Our calculations of failure probabilities show that adding
super-parity allows our system to absorb many more disk failures
without data loss. Through discrete event simulation, we found
that adding super-groups has a significant impact on mean time
to data loss and that rebuilds are slow but not unmanageable.
Finally, we showed that robustness against rare events can be
achieved for a fraction of total system cost.

I. INTRODUCTION

The amount of archival data in the world is growing rapidly
as more corporations go paper-less and more personal data
is stored in the cloud. The IDC claims that we produce
281 exabytes of data a year but throw much of it away [8].
According to the Enterprise Strategy Group, a typical company
experiences a 50% annual data store growth rate [17]. Much
of this data, including medical records, photographs, and
electronic correspondence is archival, which means that it is
rarely read or updated yet may be valuable someday.

As archival systems approach the petabyte scale, retaining
data for longer lengths of time, such as a human lifetime,
becomes even more difficult. In 2004, Xin et al. showed that
the increased probability of disk failures in petascale instal-
lations already called for more redundancy than typical data
centers provide [32]. Sector corruption alone can necessitate
additional parity on top of the standard RAID-5 configuration
such as RAID-6, intra-disk redundancy [14], or three-way
replication [9].

We propose a method to increase the reliability of storage
systems for archival data without significantly increasing either
the startup or the operational costs of the underlying storage
array. When discussing reliability, one must note that even a
very small loss rate corresponds to significant data loss. For
example, a 10 PB system with an annual loss rate of 0.001%
still loses a terabyte of data every decade.

Rare failures can include power surges, rack failures, op-
erator errors, cooling malfunctions, and disk batch failure.
To protect against these sorts of failures inexpensively, we
propose supplementing the normal redundancy in a storage
system with relatively few devices worth of additional parity
information.

The underlying storage system is a generic declustered disk
array where each disk holds a variable number of fixed-size
disklets. It is important to restrict the number of disklets per
disk to something fairly small, typically < 100, to gain the
benefits of declustering without adding an excessive amount
of metadata to track the mappings of data to disklets. Disklets
are placed in reliability stripes, and one or more parity disklets
are calculated per stripe. We add additional protection by
aggregating reliability stripes into super-groups with their
own, independently calculated parity, the super-parity. If the
system discovers failed disks or corrupt sectors, it first tries to
recover the lost data by using the redundancy in the reliability
stripe. Only in the rare event that this does not succeed will
the system read all data in a super-group and use super-
parity to reconstruct. Our additional protection functions as
an insurance policy against these rare failures at the cost of
few additional devices and write operations.

We propose a low cost method of adding reliability to
archival systems while potentially reducing the number of
disks spun up on write, resulting in fewer instances of data loss
and better write performance. We also analyze the reliability
trade-off between adding additional layers of reliability versus
adding parity to existing layers. We investigate the robustness,
defined as the probability of dataloss after several disk failures,
of our schemes, use simulation to assess the Mean Time To
Data Loss (MTTDL), and discuss the costs of adding super-
parity to archival systems.



The remainder of this paper is organized as follows. After
a review of related work, we present our system design. We
then analytically calculate robustness, report on our simulation
results to assess MTTDL of systems, and conclude with a
discussion of costs and future directions.

II. RELATED WORK

Several studies have shown that storing data reliably over
the archival time scale presents additional challenges to the
already difficult field of storage reliability [2, 21, 22]. A chal-
lenge of this size requires combining known techniques of
enhancing reliability with methods optimized for the expected
workload and time scale of archival storage.

High-performance storage systems such as Ceph and GPFS
that add reliability through mirroring are designed for systems
where availability and performance trump costs [25, 31]. For a
long term system, keeping several times the number of disks
you have for data on hand is infeasible. Coded systems such
as RAID-5 [4] or even RAID-6 [7] reduce the disk overhead
while distributing the risk for individual blocks of data, but
do not provide enough reliability.

GFS [9] takes this a step further and adds the concept of
multiple levels of redundancy to protect somewhat against
correlated failures. Baker et al. [2] showed that the most
important contributors to long-term storage reliability are fast
detection of latent sector errors, independent replicas, and fast
automatic repair. In archival systems, it is worth relaxing this
fast repair constraint to have strong reliability without the cost
overhead of competing reliability schemes.

Disk-based systems such as Oceanstore [16] and Safe-
Store [15] combine mirroring, erasure codes, and strategic
data placement to add reliability to their storage networks.
While these systems are fast and highly available, they are
less suited for archival storage because they are not optimized
to be low power and low cost. Other tiered reliability schemes
similarly lack an emphasis on cost and power management [10,
20]. We believe that our methods will work best over power-
aware archival storage systems such as Pergamum [29] or
PARAID [30].

Greenan et al. introduced the idea of using large-stripe era-
sure codes for storage [11]. We extend their model from coding
over 2-way mirrored groups to looking at trade-offs between
multiple levels of erasure coding. Since their reliability groups
are smaller, they can store parity in NV-RAM. We intend to
explore using NV-RAM to store parity when NV-RAM prices
become more competitive with always-on disks.

III. SYSTEM DESIGN

In order to protect against data loss, large storage instal-
lations need to store data redundantly. In this section, we
cover our system architecture after presenting a brief review of
erasure codes and their place in achieving storage reliability.

A. Background: Erasure Codes

Systematic erasure codes take m data symbols and add
to them k parity symbols. A Maximum Distance Separable

(MDS) code is defined as allowing the reconstruction of all
m+k symbols from any m symbols. Most often, the symbols
are interpreted as elements of a Galois field with 2f elements,
with typical values f = 8 or f = 16. Linear MDS codes
allow parity symbols to be updated based on the old parity
symbol value and the difference between the old and new data
contents. We can always insure that the first parity symbol is
calculated as the sum of all data symbols [12, 19].

A storage system can use an MDS code by grouping m
blocks for data into a reliability group and calculating the
contents of k parity blocks by taking the first symbol from each
data block as the data symbols of the chosen MDS code and
obtaining the first symbols in each parity block as the parity
symbol. Equally space efficient codes such as Even-Odd [3],
row-diagonal parity [6], and Liberation codes [23] exist for
k = 2 and k = 3. Other codes used in storage systems trade
the space efficiency for code complexity [18, 24]. While we
do not consider non-MDS codes in our analysis, we could use
the same analysis techniques with these codes.

B. Archival Storage Systems

Archival systems are designed to store data for arbitrarily
long periods of time, where the data is written once and often
never read. Though this data may never be read, the data
can be irreplaceable and losing it can incur a significant cost.
For example, a corporate e-mail archive could be crucial for
defending against a lawsuit. Data retention policies demand
minimum times during which all stored data is accessible and
instances of data loss might come under intense legal scrutiny.
In contrast to other storage systems, archival systems rarely
update data in place and need to store very large amounts
of data for longer than the lifetime of the storage medium
As disks become larger and cheaper, archival systems are
increasingly being built disk arrays instead of traditional tape
libraries. Depending on the workload, a disk-based archival
storage system can save operating and cooling costs by pow-
ering off unused disks [5].

C. Architecture

Our architecture is based on a disk array with a large,
varying number D of disks. We expect our disk array to be
a heterogeneous mix of disk brands and capacities as new
disks are incorporated into the array and old disks fail or are
decommissioned. We split each disk into L disklets where each
disklet stores either data or parity. L typically ranges from
20 to 150. Breaking up a disk into disklets has two primary
advantages: it allows us to scale to disks of arbitrary size and,
by carefully assigning data to disklets, it makes it easier for
us to distribute parity across our system

The disk array groups n disklets into a reliability stripe such
that m disklets store user data and the remaining k = n − m
disklets store parity data. The controller calculates the parity
using a linear MDS code. As a result, a stripe can tolerate ≤ k
unavailable disklets without loss of access to all data stored
in the stripe. We assume that data is protected against block
corruption by scrubbing [26, 29]. To maximize robustness, the



Fig. 1. Four reliability groups are split over eight disks with the super-parity
device holding super-parity for the entire super-group. Each small square is
a disklet.

system places all disklets that compose a stripe onto different
disks whenever possible. The array can tolerate up to k disk
failures without incurring data loss. The data from failed disks
is reconstructed onto standby disks in the disk array.

On top of this standard disk array, we introduce our addi-
tional protection mechanism that deals with less predictable
data loss in a stripe. The system groups r reliability stripes
into a super-group. Figure 1 shows a sample physical layout
of this architecture. Using standard parity, we can reconstruct
any one failed disk. Super-parity is linearly independent from
standard stripe parity, and so we can reconstruct any two failed
disks using the super-parity to augment the stripe parity. Disk
#9 is a dedicated super-parity device. Unlike the other disks in
the system, these devices only see write traffic, mostly read-
modify-write traffic. By keeping the super-parity on dedicated
disks, we can take advantage of hardware that is better at
handling a heavy write workload than traditional disks.

An archival storage system can improve read access times
by striping data over disklets in a reliability group and thus
avoiding read-modify-write operations for the stripe parity.
Additionally, archival workloads rarely update data in place.
We do not envision the system trying to stripe over super-
groups, in part because of the size of the groups. Thus, write
workload at the super-parity devices is heavy. Depending on
this load, we can use a variety of devices such as:

1) Inexpensive, always-on SATA disks
2) Enterprise class disks. Ideally, we would use a larger

number of lower-capacity disks than we do when using
inexpensive disks.

3) Solid state memory and future storage class memory
devices

4) Massively distributed non-volatile RAM (where each
RAM device is very small).

Unlike for reliability stripes, we make no assumption that
the rn disklets in a super-group (other than the super-parity
disklets) are located in different disks. This policy greatly

simplifies the construction of super-groups, especially as we
expect data to migrate from failed disks to other disks. When
we use super-parity to reconstruct otherwise lost data, we
need to read all data in the super-group. Therefore, recovery
from the effects of disk failures can be significantly more
involved than for single stripe failure. We discuss this further
in Sections IV-D and VI.

We generate parity in our scheme with two different erasure
correcting codes that together make up a pyramid code [13].
For our purposes, we can think of this class of codes as
resulting from a large, linear, MDS code such as a Reed
Solomon code with rm data symbols and k+s parity symbols.
We then remove the first k parity symbols from the code and
add k parity symbols to each stripe of m data symbols. These
local parity symbols are calculated in the same way as in
the original array except that we replace the data symbols
outside each stripe of m by zeroes, thus making the parities
independent, as each of the old parity symbols is the sum of
the corresponding new parity symbols. With this code, we can
correct k erased symbols in a stripe using only the information
from the stripe. Globally, our new code is stronger than the
old one, which can only correct k + s erasures. Assume a set
of erased symbols. If there are f erased symbols in a stripe
and f > k, then call f −k the excess of the stripe. If the sum
of the excesses is less than or equal to s, we can still correct
the erasures. Grid codes [18] have a similar structure and the
same functionality, and our analysis applies to them as well.

IV. ANALYTICAL MODEL

We calculate the robustness of our disk array by computing
the probability of data loss given a certain number of disk
failures. Modeling robustness avoids several problems that
occur when modeling the reliability of disk arrays. First,
since we expect this system to run for a very long time,
we must include correlated failures in our reliability analysis.
Without a large-scale empirical study of correlated data fail-
ures over time in actual storage systems, modeling correlated
disk failure would require enough assumptions to make the
model meaningless. Similarly, many assumptions are required
to translate Mean Time To Data Loss (MTTDL) into a realistic
reliability metric. For example, we cannot simply assume
that the failure rates of disks are constant as they will vary
by age and device type. Additionally, data reconstruction
times depend heavily on both expected workload and service
guarantees, since handling reads and writes limit the disk and
network bandwidth available to the rebuild process. We use
simulation to get some idea of the expected MTTDL increase
in Section V.

A. Robustness

We define our parameters in Table I. We assume that there
are currently a small number f of failed disks. Since disklets in
a stripe come from different disks, the number x of unavailable
disklets in a randomly chosen reliability stripe is given as the
quotient of the number of ways to allocate x failures among
the n disks making up the stripe multiplied by the number of



TABLE I
PARAMETERS AND SAMPLE VALUES

Parameter Meaning
m data disklets in a reliability strip
k parity disklets in a reliability stripe

n = m + k number of disklets in a reliability stripe
r number of reliability stripes in a super-group

D total number of disks (excluding super-parity devices)
L number of disklets per disk

N = L · D total number of disklets
d = r · n number of disklets per super-group

u = ⌈D·L

n·r
⌉ total number of super-groups
s number of super-paritiesper super-group
f number of failed disks

U = ⌈D·L·s

n·r
⌉ number of disks storing super-parity

ways to allocate f − x failures among the remaining D − n
disks and the number of ways to distribute f failures among
all D disks:

px(f, n,D) =

(

n

x

)(

D − n

f − x

)(

D

f

)−1

.

Each reliability stripe protects itself against disklet unavail-
ability through its k parity disklets. Therefore, the probability
pS that all data in a given single reliability stripe remains
accessible without resorting to super-parity after f disk failures
is:

pS(f, k, n,D) =

k
∑

i=0

pi(f, n,D).

Since the total number of stripes is DL/n, the probability
of dataloss without any super-parity given f failed disks is

pDL0(f, k, n,D) = 1 − pS(f, k, n,D)DL/n.

We now calculate the robustness of individual super-groups.
We denote the number of failed disks within reliability stripe i
in a super-group as fi. The numbers of failed disks per stripe
over the r stripes in the super-group are independent stochastic
variables. We assume that all s super-parities are available. The
erasure correcting code can use these s disklets to recover all
data in the super-group as long as

∑r
i=1 max(fi − k, 0) ≤ s.

Define S to be the set of all tuples ~f = (f1, f2, . . . fr) with
non-negative integer coordinates fj such that

∑r
j=1 max(fj −

k, 0) ≤ s. The probability pUber that an super-group has failed
is:

psup(s, k, f, n, r,D) =
∑

~f∈S

r
∏

i=1

pfi
(f, n,D).

For instance, a super-group with k = 2 parity disks per
stripe and s = 2 super-parity disklets per group protects
against data loss if there is either

1) One stripe with k + 2 unavailable disklets and no other
stripes with more than k unavailable disklets.

2) One or two stripes with k + 1 unavailable disklets and
no other stripes with more than k unavailable disklets,
or

3) No stripe with more than k unavailable disklets.

20 40 60 80 100
Failed Disks

0.2

0.4

0.6

0.8

1.0

Prob. no Über-parity Lost

Fig. 2. Probability that no super-parity bearing disk is lost. n = 16, r = 16,
D = 1024, L = 64

Correspondingly:

psup(2, k, f, n, r,D) =

(

n

1

)

p4(f, n,D)pS(k, f, n,D)r−1

+

(

n

1

)

p3(f, n,D)pS(k, f, n,D)r−1

+

(

n

2

)

p3(f, n,D)2pS(k, f, n,D)r−2

+ pS(k, f, n,D)r.

B. Super-parity Failures

Adding super-parity devices increase the robustness of the
system disproportionate to the storage overhead. We will show
super-parity failures have a disproportionately large effect on
system reliability.

Depending on the expected load the archive has to sustain,
we write super-parity on devices ranging from the inexpensive,
high-capacity, low-power commodity drives typical in archival
systems to enterprise disks to SSDs, NV-RAM, and other
storage class memory solutions. To model super-parity failures
more accurately given these different classes of devices, we
consider super-parity on both high and zero failure devices.
We expect a real system to fall somewhere between these
two extremes, so we need to examine the impact of both
assumptions.

First, we consider super-parity stored on the same sort of
devices as the data, which we assume are the inexpensive,
low-power commodity drives typical in archival systems. As a
result, the super-parity will fail at the same rate as an ordinary
disk.

There are only ⌈sD/nr⌉ of these super-parity devices out
of typically a much larger number of total disks, which means
that many disks need to fail across the system to lose a large
percentage of the super-parity (Figure 2). However, losing
even a little super-parity still has a considerable impact on
robustness.

Given f failures among the D + U devices, the probability
that x super-parity devices have failed is:

psf (x, f,D,U) =

(

U

x

)(

D

f − x

)(

U + D

f

)−1

.



We now further restrict discussion to the case s = 1. If x of the
U = DL

nr super-parity have failed, then v = xL of all super-
groups have lost super-parity protection and w =

(

D
nr − x

)

L
have not. The probability that one of the parity-less super-
groups has not lost data is equivalent to the probability that
all reliability stripes in the super-group have not lost data, or
p1 = pS(f, k, n,D)r . Correspondingly, the probability that
the super-groups that still have parity have lost data is p2 =
pS(f, k, n,D)r + rpk+1(f, n,D)pS(f, k, n,D)r−1, which is
the probability that either all super-groups have not lost data or
exactly 1 super-group only suffered k+1 unavailable disklets.

We can now calculate the probability pDL1′ of data loss as
a sum of data loss suffered given x failed super-parity devices
weighted by the probability of x failures among the super-
parity devices:

pDL1′ = 1 −
U

∑

x=0

(pv
1 · pw

2 · psf(x).
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Fig. 3. Comparison of robustness with (dashed) and without super-parity
device failures. Parameters are D = 1024, r = 16, k = 1, and s = 1 with
n = 32, L = 128 or n = 16, L = 64

Alternatively, if we assume that the super-parity is stored
on a device that “never” fails, the probability of data loss is
given by pdl, the probability that at least one super-group has
lost data:

pdl(s, k, f, n,D, r, L) = 1 − (pUber(s, k, f, n,D, r, L))
u

.

Figure 3 compares these two assumptions for two typical
configurations. We set D = 1024, r = 16, k = 1, and s = 1.
For each assumption, we plot curves for the parameter sets
n = 32, L = 128 and n = 16, L = 64. In the case where
super-parity devices can fail (the dashed lines in Figure 3),
the curves are just slightly above the curves without failure.
Since these curves are nearly indistinguishable, we can use the
failure-free case to reasonably approximate a real system.

C. Parameter Sensitivities

We now investigate the impact of various parameters on the
robustness of disk arrays. For simplicity’s sake we assume that
super-parity disks do not fail. Figure 4 compares the robustness
of declustered RAID-5, declustered RAID-6, and RAID-5 with

the addition of either one or two super-parity devices per
super-group. We see that RAID-5 with one super-parity is
on par with RAID-6, while RAID-5 with two super-parities
is significantly more robust. While the operational overhead
of the super-parity approaches are obviously higher, since
each write touches more disks, the storage overhead is much
smaller. For example, with n disklets per reliability stripe and
r = 16 reliability stripes per super-group the storage overhead
for the approach with two super-parities per super-groupis 1

n
for the RAID-5 parity added to 2

16n , representing the super-
parity, for a total of 9

8n units of overhead versus the 2
n needed

for RAID-6. Thus, super-parity clearly adds more robustness
for its storage overhead compared to traditional parity.

Our next step is to vary L, n, and r across disk layouts with
D = 1024 to examine parameter effects. From Figures 5, 6,
and 7, we see that robustness is most heavily affected by n,
which makes sense given that n has the most effect on the
parity overhead. Increasing L, the number of disklets per disk,
lowers robustness by increasing the chance that a set of disk
failures will impact enough stripes to reach an unrecoverable
configuration of failures across the super-group. Also, as L
increases the number of unrecoverable stripes, the amount of
data lost during an unrecoverable failure increases accordingly.
Remarkably, increasing r only modestly hurts robustness. This
is good news since this allows us to spend our budget on
a few faster, more resilient devices for super-parity without
suffering a significant hit in added robustness. The effect is
more pronounced for s = 1 than for s = 2. When comparing
schemes with the same amount of parity information updated
by a write (e.g., k = 2, s = 2 and k = 3, s = 1,) we notice
that robustness does not change much.

D. Disk Rebuild Workload

To measure the costs of recovery, we calculated the expected
costs of recovering data after f disk failures. In these calcu-
lations, we assumed that we recover even if there was some
data loss in the array.

We depict our results for the k = 1, s = 1; k = 2, s = 1; and
k = 2, s = 2 configurations in Figure IV-D with parameters
D = 1024, L = 64, n = 16, and r = 16. Here, the workload
is measured in the total number of disks accessed over all
reads and writes. The different lines on the graph correspond
to cumulative reconstruction load, the reconstruction load from
recovering a single-stripe, and the reconstruction load within
a single super-group.

The individual components of the workload show a single
peak. As the number of failed disks (f ) increases, there are
more stripes or super-groups with disklets that need to be
recovered. The peak occurs when we pass the point where
enough disks have failed that the probability that all data
can be recovered approaches zero. As expected, the recovery
workload for the super-parity case has a steeper rise and
fall than the standard stripe recovery case and peaks at a
different f , resulting in the total workload potentially having
two maxima.
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Fig. 4. Data Loss Probabilities varying n = 8, 12, . . . 32 for different k, s pairs with D = 1024, r = 16, L = 64.

E. Comparisons

We compare the robustness of four schemes, k = 1, s = 3;
k = 2, s = 2; k = 3, s = 1; and k = 4, s = 0, all of which
protect a data item with four parities. These configurations
have parity storage overheads of 19/256, 34/256, 49/256,
and 64/256, respectively. Figure 9 shows that data loss is most
likely when k = 1 and s = 3. If we assume for a moment that
storage costs are the same for super-parity as for stripe parity,
we can make a fairer comparison (Figure 10).

In Figure 11, we see that setting n = 16 for the k = 4, s = 0
configuration gives us a storage overhead similar to setting
n = 20 in the k = 3, s = 1 configuration. At this storage
overhead, the configuration with super-parity can tolerate
approximately seven additional failures. When we make the
same comparison with the k = 2, s = 2 scheme, we need
to set n = 30, 31 and find that the k = 2, s = 2 scheme
tolerates six more disk failures. However, as we move more
parity from the stripe into the super-group, the probability of
having to use the super-parity for reconstruction increases. In
summary, k = 3, s = 1 appears to analytically be the best
combination of standard parity and super-parity.

V. SIMULATION

Analyzing MTTDL directly is very hard (Section IV), but
it is still a useful metric to see the benefits of super-parity.
To examine the gains in MTTDL, we built a discrete event
simulator that models independent disk failures and the rebuild

time after a failure. Each iteration of the simulator runs
until a data loss event is reached and the current time is
recorded. Because we want to capture catastrophic failures,
each iteration takes considerable time to run. Thus, we present
results based on 100 iterations of the simulator, which has
shown sufficient in earlier work [29].

Our simulator was built on top of the Python SimPy
library [28] and contains five core events: DiskFail,
DiskRebuild, LargeStripeRebuild, SectorFail

and Scrub. Values for disk failure time, sector failure time
and disk scrub are all drawn from an exponential distribution.
Though we believe that it would be interesting to look at
write bottlenecks in the system, this system is designed for
an archival workload where writes can be batched. Thus we
consider exploring these bottlenecks as a secondary concern
and do not model writes.

We model the effects of disk spin-up by subtracting 10 hours
from the life of a disk every time it is spun up [26, 29]. This
is a high estimate as newer drives become more robust, and
so our simulation should correspond to a lower MTTDL in a
real system.

We initialized the simulator to 1024 1 TB disks with
reliability groups of 16 disks and super-groups of 256 disks.
Super-parity is assumed to be stored on the same sort of disks
as the data. Our baseline for comparison is having no super-
parity represented by the 256-0 point on the graph. Figure 12
shows the percent increase in MTTDL after adding super-
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Fig. 5. Data Loss Probabilities for varying parameters from k = 2, s = 1, D = 1024, n = 16, r = 16,and L = 64.

groupsand super-parity. On the x-axis we show the differ-
ent super-groupsuper-parity configurations we simulated (e.g.,
255-1 corresponds to the case where there is 1 super-parity
for every 255 disklets). We see the most gain in the 15 disk,
1 parity case since the super-parity has the greatest chance
of being invoked. Note that this is a substantial improvement
even though, as we discuss below, we are making worst case
assumptions for disk rebuild. For systems with more parity, the
line becomes effectively flat. This is due to failures being rare
enough that extra parity matters less and the corresponding
simulator results are more likely to fluctuate.

This is a different parity balance than our analytical result
because it is measuring MTTDL instead of robustness. Our
analytical results answer the question “What parity balance
handles the most failures?” while our simulator results answer
the question “What parity balance will result in the highest
increase in MTTDL?” Since we lack real data for failure
correlation, we modeled failures as independent disk events
pulled from an exponential distribution. We believe that a real-
world scenario will have more correlated failures and thus will
show more super-parity being more useful.

We used a disk read rate of 7 MB/s to rebuild the disks,
which leads to a standard rebuild time of approximately
10 hours and a worst case super-parity rebuild time of one
week. This is a long period without data availability, but we
do not expect disks in an archival system to be under a heavy
read load and furthermore we expect the disk read time for

commodity hard drives to approach that of current enterprise
drives, which have read rates as high as 125 MB/s [1] within
a few years, potentially decreasing the super-parity rebuild
time by an order of magnitude. Finally, we stress this is a
worst case, only triggered by all of the super-groups needing
to rebuild simultaneously and each only operating at a quarter
of the read rate.

We are simulating that rebuilding can only use up to a
quarter of the disk bandwidth and only read from 16 disks
at a time. We expect that in a real system we could use more
disk bandwidth and rebuild more disks in parallel. Thus, if
an installation could temporarily sacrifice disk bandwidth, the
rebuild time would reduce to hours instead of days. Refer
back to Section IV-D for a more thorough analysis of rebuild
performance.

VI. COST ANALYSIS

Additional parity will always add reliability. The more
interesting question is “Is the observed increase in reliability
worth the cost?”. An archival system is meant to run for the
foreseeable future, so it is important to consider the operational
cost projection as well the up-front costs of implementing
any system meant to handle archival workloads. While it is
important to keep the up-front cost low, we project that hard-
ware prices will continue to decrease while operational costs,
dominated by power, cooling, and data-center availability, will
not decrease. Assume a 10 PB system composed of 1 TB disks
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Fig. 6. Data Loss Probabilities for varying parameters from k = 3, s = 1, D = 1024, n = 16, r = 16,and L = 64.

TABLE II
SUPER-PARITY DEVICE COSTS

Super-parity Device Initial Equipment Overhead Annual Power Overhead 5-Year Overhead Write Rate

Western Digital Caviar:
4x250 GB SATA Disks $10,320 $3,210 $26,370 100 MB/s per disk
Distributed NV-RAM: $48,997 with Variable: 100× write =

1 GB Devices $44,032 $10· avg. simultaneous writes < 100 simultaneous writes ∗ 15 MB/s per device.
Axiom:

4x256 GB SSDs $522,708 $460 $525,008 200 MB/s per disk

that are kept powered down unless needed for a write. Table II
outlines the cost and corresponding write rates of different
super-parity devices. Regardless of the super-parity device we
use, we want to store super-parity on devices smaller than the
data disks for increased bandwidth.

While flash is more reliable than disk, there are few enough
super-parity devices that the impact of the device reliability
is minimal, and thus we feel that the cost overhead is too
high to justify having NV-RAM instead of having ten times
the number of parity disks. In a very write-heavy workload,
solid state drives (SSDs) may be attractive, even though they
are initially expensive. One advantage of our design is that
super-parity can be stored on an assortment of devices as
technologies and financial situations change.

The running cost of the additional disk is mainly the power
it consumes. While running additional disks in a data center
certainly makes the entire data center warmer, whether or
not this will incur an increase in cooling costs is difficult
to know [27]. On a power-aware archival system, we expect

disks to typically be spun up about 5% of the time. Assuming
$0.12 per KWatt with modern efficient drives, this results in
an annual operating cost of at least $40,000. The additional
annual operating cost for storing super-parity on SATA drives
adds an overhead of about 0.7%, which we believe is a small
enough overhead that the reliability increase is well worth the
cost.

VII. FUTURE WORK

We see several possible extensions to this project. First, our
current analysis is restricted to homogeneous, static codes.
Different coding structures could allow us to encode our
domain knowledge about the reliability of different sets of
disks. For example, newer disks are more likely to fail than
older, burned in disks. Thus, we may want to give stripes
with many young disks extra parity to protect against the
higher probability of failure. Alternatively, if an organization
has servers in several stable areas and one volatile area, the
large-stripe code could be biased to handle three failures in
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Fig. 7. Data Loss Probabilities for varying parameters from k = 2, s = 2, D = 1024, n = 16, r = 16,and L = 64.

 0

 100

 200

 300

 400

 500

256-0 255-1 254-2 253-3

%
 I

m
p

ro
v
e

m
e

n
t 

v
s
 n

o
 S

u
p

e
r-

P
a

ri
ty

Super-Group Size - Super-Parity

12 data 4 parity
13 data 3 parity
14 data 2 parity
15 data 1 parity

Fig. 12. Percent increase in MTTDL with super-parity vs. no super-parity

the unstable region and only one in the stable for less cost
than adding three-disk parity across the entire stripe.

One major limitation to our analysis is the lack of ex-
perimental data covering correlated failures in large storage
systems. As we discussed in Section I, we believe that the sorts
of rare-event failures we protect against most likely have a
single origin such as a cooling malfunction, disk batch failure,

fire, or natural disaster. While super-parity can not provide
the same level of reliability as multi-site redundancy, knowing
the prevalence and distribution of correlated failures would
enable us to better define the compromise between costs and
reliability in an archival system that uses super-parity.
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Fig. 8. Rebuild workloads for different parity configurations with n = 16,
r = 16, D = 1024, and L = 64. Workload is defined as the total number
of disks accessed across all reads and writes.

VIII. CONCLUSION

We have presented a powerful technique for increasing
the reliability of an archival system for little cost. In our
analysis, we saw that using super-parity allowed us to tolerate
several additional disk failures over a system with comparable
storage overhead. In the simulation, we see up to a four-fold
improvement in MTTDL after adding super-parity. In short,
we have a more robust system than RAID and require many
fewer disks than mirroring. Thus, with its correspondingly low
lost, we believe adding super-parity is a good value proposition
for archival storage systems.
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